--- library_name: transformers base_model: rmtariq/malay_classification tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: malay_classification results: [] --- # malay_classification This model is a fine-tuned version of [rmtariq/malay_classification](https://huggingface.co/rmtariq/malay_classification) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 - Accuracy: 1.0 - F1: 1.0 - Precision: 1.0 - Recall: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.1691 | 0.2720 | 500 | 0.1373 | 0.9717 | 0.9717 | 0.9730 | 0.9717 | | 0.0493 | 0.5441 | 1000 | 0.0369 | 0.9943 | 0.9943 | 0.9945 | 0.9943 | | 0.0669 | 0.8161 | 1500 | 0.0406 | 0.9952 | 0.9952 | 0.9954 | 0.9952 | | 0.0287 | 1.0881 | 2000 | 0.0276 | 0.9943 | 0.9944 | 0.9948 | 0.9943 | | 0.0061 | 1.3602 | 2500 | 0.0168 | 0.9971 | 0.9971 | 0.9972 | 0.9971 | | 0.0137 | 1.6322 | 3000 | 0.0128 | 0.9981 | 0.9981 | 0.9981 | 0.9981 | | 0.0178 | 1.9042 | 3500 | 0.0179 | 0.9968 | 0.9968 | 0.9969 | 0.9968 | | 0.0112 | 2.1763 | 4000 | 0.0110 | 0.9975 | 0.9975 | 0.9975 | 0.9975 | | 0.0001 | 2.4483 | 4500 | 0.0079 | 0.9987 | 0.9987 | 0.9988 | 0.9987 | | 0.0001 | 2.7203 | 5000 | 0.0021 | 0.9987 | 0.9987 | 0.9987 | 0.9987 | | 0.0003 | 2.9924 | 5500 | 0.0024 | 0.9990 | 0.9990 | 0.9991 | 0.9990 | ### Framework versions - Transformers 4.53.1 - Pytorch 2.7.1 - Datasets 3.6.0 - Tokenizers 0.21.2