Upload CamemBERT-v2 multitask classifier checkpoint-49500
Browse files- config.json +526 -0
- model.safetensors +3 -0
- multitask_transformer/__pycache__/configuration_multitask.cpython-312.pyc +0 -0
- multitask_transformer/__pycache__/modeling_multitask.cpython-312.pyc +0 -0
- multitask_transformer/configuration_multitask.py +26 -0
- multitask_transformer/modeling_multitask.py +198 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
config.json
ADDED
@@ -0,0 +1,526 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"MultiTaskClsModel"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"embedding_size": 768,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"finetuning_task": "text-classification",
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"id2label_dict": {
|
15 |
+
"age_group": {
|
16 |
+
"0": "adult",
|
17 |
+
"1": "elderly",
|
18 |
+
"2": "not_specified",
|
19 |
+
"3": "pediatric"
|
20 |
+
},
|
21 |
+
"assertion_type": {
|
22 |
+
"0": "factual",
|
23 |
+
"1": "hypothetical",
|
24 |
+
"2": "mixed",
|
25 |
+
"3": "opinion",
|
26 |
+
"4": "recommendation"
|
27 |
+
},
|
28 |
+
"certainty_level": {
|
29 |
+
"0": "definitive",
|
30 |
+
"1": "possible",
|
31 |
+
"2": "probable",
|
32 |
+
"3": "uncertain"
|
33 |
+
},
|
34 |
+
"contains_abbreviations": {
|
35 |
+
"0": "0",
|
36 |
+
"1": "1"
|
37 |
+
},
|
38 |
+
"contains_bias": {
|
39 |
+
"0": "0",
|
40 |
+
"1": "1"
|
41 |
+
},
|
42 |
+
"contains_numbers": {
|
43 |
+
"0": "0",
|
44 |
+
"1": "1"
|
45 |
+
},
|
46 |
+
"content_novelty": {
|
47 |
+
"0": "established",
|
48 |
+
"1": "outdated",
|
49 |
+
"2": "recent_developments"
|
50 |
+
},
|
51 |
+
"content_richness": {
|
52 |
+
"0": "1",
|
53 |
+
"1": "2",
|
54 |
+
"2": "3",
|
55 |
+
"3": "4",
|
56 |
+
"4": "5"
|
57 |
+
},
|
58 |
+
"content_type": {
|
59 |
+
"0": "background_review",
|
60 |
+
"1": "clinical_guidance",
|
61 |
+
"2": "drug_information",
|
62 |
+
"3": "medical_knowledge",
|
63 |
+
"4": "other",
|
64 |
+
"5": "patient_case",
|
65 |
+
"6": "policy_administrative",
|
66 |
+
"7": "research_findings",
|
67 |
+
"8": "research_methodology"
|
68 |
+
},
|
69 |
+
"educational_score": {
|
70 |
+
"0": "1",
|
71 |
+
"1": "2",
|
72 |
+
"2": "3",
|
73 |
+
"3": "4",
|
74 |
+
"4": "5"
|
75 |
+
},
|
76 |
+
"interactive_elements": {
|
77 |
+
"0": "instructions",
|
78 |
+
"1": "none",
|
79 |
+
"2": "questions",
|
80 |
+
"3": "tasks"
|
81 |
+
},
|
82 |
+
"list_format": {
|
83 |
+
"0": "0",
|
84 |
+
"1": "1"
|
85 |
+
},
|
86 |
+
"medical_subfield": {
|
87 |
+
"0": "anatomical_pathology",
|
88 |
+
"1": "anesthesiology",
|
89 |
+
"2": "biology_medicine",
|
90 |
+
"3": "cardiology",
|
91 |
+
"4": "dentistry",
|
92 |
+
"5": "dermatology",
|
93 |
+
"6": "digestive_surgery",
|
94 |
+
"7": "endocrinology",
|
95 |
+
"8": "gastroenterology",
|
96 |
+
"9": "general_medicine",
|
97 |
+
"10": "general_surgery",
|
98 |
+
"11": "genetics",
|
99 |
+
"12": "geriatrics",
|
100 |
+
"13": "gynecology_medical",
|
101 |
+
"14": "gynecology_obstetrics",
|
102 |
+
"15": "hematology",
|
103 |
+
"16": "intensive_care",
|
104 |
+
"17": "internal_medicine",
|
105 |
+
"18": "maxillofacial_surgery",
|
106 |
+
"19": "midwifery",
|
107 |
+
"20": "nephrology",
|
108 |
+
"21": "neurology",
|
109 |
+
"22": "neurosurgery",
|
110 |
+
"23": "nuclear_medicine",
|
111 |
+
"24": "occupational_medicine",
|
112 |
+
"25": "oncology",
|
113 |
+
"26": "ophthalmology",
|
114 |
+
"27": "oral_surgery",
|
115 |
+
"28": "orthodontics",
|
116 |
+
"29": "orthopedic_surgery",
|
117 |
+
"30": "other",
|
118 |
+
"31": "otolaryngology",
|
119 |
+
"32": "pediatric_surgery",
|
120 |
+
"33": "pediatrics",
|
121 |
+
"34": "pharmacy",
|
122 |
+
"35": "plastic_surgery",
|
123 |
+
"36": "pneumology",
|
124 |
+
"37": "psychiatry",
|
125 |
+
"38": "public_health",
|
126 |
+
"39": "radiology",
|
127 |
+
"40": "rehabilitation",
|
128 |
+
"41": "rheumatology",
|
129 |
+
"42": "thoracic_surgery",
|
130 |
+
"43": "urologic_surgery",
|
131 |
+
"44": "vascular_surgery"
|
132 |
+
},
|
133 |
+
"pretraining_suitable": {
|
134 |
+
"0": "0",
|
135 |
+
"1": "1"
|
136 |
+
},
|
137 |
+
"rewriting_needed": {
|
138 |
+
"0": "0",
|
139 |
+
"1": "1"
|
140 |
+
},
|
141 |
+
"sex": {
|
142 |
+
"0": "female",
|
143 |
+
"1": "male",
|
144 |
+
"2": "not_specified"
|
145 |
+
},
|
146 |
+
"terminology_precision": {
|
147 |
+
"0": "1",
|
148 |
+
"1": "2",
|
149 |
+
"2": "3",
|
150 |
+
"3": "4",
|
151 |
+
"4": "5"
|
152 |
+
},
|
153 |
+
"text_type": {
|
154 |
+
"0": "incomplete",
|
155 |
+
"1": "meaningful"
|
156 |
+
},
|
157 |
+
"writing_quality": {
|
158 |
+
"0": "1",
|
159 |
+
"1": "2",
|
160 |
+
"2": "3",
|
161 |
+
"3": "4",
|
162 |
+
"4": "5"
|
163 |
+
},
|
164 |
+
"writing_style": {
|
165 |
+
"0": "academic",
|
166 |
+
"1": "clinical",
|
167 |
+
"2": "other",
|
168 |
+
"3": "pedagogical",
|
169 |
+
"4": "regulatory"
|
170 |
+
}
|
171 |
+
},
|
172 |
+
"initializer_range": 0.02,
|
173 |
+
"intermediate_size": 3072,
|
174 |
+
"label2id_dict": {
|
175 |
+
"age_group": {
|
176 |
+
"adult": 0,
|
177 |
+
"elderly": 1,
|
178 |
+
"not_specified": 2,
|
179 |
+
"pediatric": 3
|
180 |
+
},
|
181 |
+
"assertion_type": {
|
182 |
+
"factual": 0,
|
183 |
+
"hypothetical": 1,
|
184 |
+
"mixed": 2,
|
185 |
+
"opinion": 3,
|
186 |
+
"recommendation": 4
|
187 |
+
},
|
188 |
+
"certainty_level": {
|
189 |
+
"definitive": 0,
|
190 |
+
"possible": 1,
|
191 |
+
"probable": 2,
|
192 |
+
"uncertain": 3
|
193 |
+
},
|
194 |
+
"contains_abbreviations": {
|
195 |
+
"0": 0,
|
196 |
+
"1": 1
|
197 |
+
},
|
198 |
+
"contains_bias": {
|
199 |
+
"0": 0,
|
200 |
+
"1": 1
|
201 |
+
},
|
202 |
+
"contains_numbers": {
|
203 |
+
"0": 0,
|
204 |
+
"1": 1
|
205 |
+
},
|
206 |
+
"content_novelty": {
|
207 |
+
"established": 0,
|
208 |
+
"outdated": 1,
|
209 |
+
"recent_developments": 2
|
210 |
+
},
|
211 |
+
"content_richness": {
|
212 |
+
"1": 0,
|
213 |
+
"2": 1,
|
214 |
+
"3": 2,
|
215 |
+
"4": 3,
|
216 |
+
"5": 4
|
217 |
+
},
|
218 |
+
"content_type": {
|
219 |
+
"background_review": 0,
|
220 |
+
"clinical_guidance": 1,
|
221 |
+
"drug_information": 2,
|
222 |
+
"medical_knowledge": 3,
|
223 |
+
"other": 4,
|
224 |
+
"patient_case": 5,
|
225 |
+
"policy_administrative": 6,
|
226 |
+
"research_findings": 7,
|
227 |
+
"research_methodology": 8
|
228 |
+
},
|
229 |
+
"educational_score": {
|
230 |
+
"1": 0,
|
231 |
+
"2": 1,
|
232 |
+
"3": 2,
|
233 |
+
"4": 3,
|
234 |
+
"5": 4
|
235 |
+
},
|
236 |
+
"interactive_elements": {
|
237 |
+
"instructions": 0,
|
238 |
+
"none": 1,
|
239 |
+
"questions": 2,
|
240 |
+
"tasks": 3
|
241 |
+
},
|
242 |
+
"list_format": {
|
243 |
+
"0": 0,
|
244 |
+
"1": 1
|
245 |
+
},
|
246 |
+
"medical_subfield": {
|
247 |
+
"anatomical_pathology": 0,
|
248 |
+
"anesthesiology": 1,
|
249 |
+
"biology_medicine": 2,
|
250 |
+
"cardiology": 3,
|
251 |
+
"dentistry": 4,
|
252 |
+
"dermatology": 5,
|
253 |
+
"digestive_surgery": 6,
|
254 |
+
"endocrinology": 7,
|
255 |
+
"gastroenterology": 8,
|
256 |
+
"general_medicine": 9,
|
257 |
+
"general_surgery": 10,
|
258 |
+
"genetics": 11,
|
259 |
+
"geriatrics": 12,
|
260 |
+
"gynecology_medical": 13,
|
261 |
+
"gynecology_obstetrics": 14,
|
262 |
+
"hematology": 15,
|
263 |
+
"intensive_care": 16,
|
264 |
+
"internal_medicine": 17,
|
265 |
+
"maxillofacial_surgery": 18,
|
266 |
+
"midwifery": 19,
|
267 |
+
"nephrology": 20,
|
268 |
+
"neurology": 21,
|
269 |
+
"neurosurgery": 22,
|
270 |
+
"nuclear_medicine": 23,
|
271 |
+
"occupational_medicine": 24,
|
272 |
+
"oncology": 25,
|
273 |
+
"ophthalmology": 26,
|
274 |
+
"oral_surgery": 27,
|
275 |
+
"orthodontics": 28,
|
276 |
+
"orthopedic_surgery": 29,
|
277 |
+
"other": 30,
|
278 |
+
"otolaryngology": 31,
|
279 |
+
"pediatric_surgery": 32,
|
280 |
+
"pediatrics": 33,
|
281 |
+
"pharmacy": 34,
|
282 |
+
"plastic_surgery": 35,
|
283 |
+
"pneumology": 36,
|
284 |
+
"psychiatry": 37,
|
285 |
+
"public_health": 38,
|
286 |
+
"radiology": 39,
|
287 |
+
"rehabilitation": 40,
|
288 |
+
"rheumatology": 41,
|
289 |
+
"thoracic_surgery": 42,
|
290 |
+
"urologic_surgery": 43,
|
291 |
+
"vascular_surgery": 44
|
292 |
+
},
|
293 |
+
"pretraining_suitable": {
|
294 |
+
"0": 0,
|
295 |
+
"1": 1
|
296 |
+
},
|
297 |
+
"rewriting_needed": {
|
298 |
+
"0": 0,
|
299 |
+
"1": 1
|
300 |
+
},
|
301 |
+
"sex": {
|
302 |
+
"female": 0,
|
303 |
+
"male": 1,
|
304 |
+
"not_specified": 2
|
305 |
+
},
|
306 |
+
"terminology_precision": {
|
307 |
+
"1": 0,
|
308 |
+
"2": 1,
|
309 |
+
"3": 2,
|
310 |
+
"4": 3,
|
311 |
+
"5": 4
|
312 |
+
},
|
313 |
+
"text_type": {
|
314 |
+
"incomplete": 0,
|
315 |
+
"meaningful": 1
|
316 |
+
},
|
317 |
+
"writing_quality": {
|
318 |
+
"1": 0,
|
319 |
+
"2": 1,
|
320 |
+
"3": 2,
|
321 |
+
"4": 3,
|
322 |
+
"5": 4
|
323 |
+
},
|
324 |
+
"writing_style": {
|
325 |
+
"academic": 0,
|
326 |
+
"clinical": 1,
|
327 |
+
"other": 2,
|
328 |
+
"pedagogical": 3,
|
329 |
+
"regulatory": 4
|
330 |
+
}
|
331 |
+
},
|
332 |
+
"labels_list": [
|
333 |
+
[
|
334 |
+
"1",
|
335 |
+
"2",
|
336 |
+
"3",
|
337 |
+
"4",
|
338 |
+
"5"
|
339 |
+
],
|
340 |
+
[
|
341 |
+
"1",
|
342 |
+
"2",
|
343 |
+
"3",
|
344 |
+
"4",
|
345 |
+
"5"
|
346 |
+
],
|
347 |
+
[
|
348 |
+
"1",
|
349 |
+
"2",
|
350 |
+
"3",
|
351 |
+
"4",
|
352 |
+
"5"
|
353 |
+
],
|
354 |
+
[
|
355 |
+
"1",
|
356 |
+
"2",
|
357 |
+
"3",
|
358 |
+
"4",
|
359 |
+
"5"
|
360 |
+
],
|
361 |
+
[
|
362 |
+
"0",
|
363 |
+
"1"
|
364 |
+
],
|
365 |
+
[
|
366 |
+
"0",
|
367 |
+
"1"
|
368 |
+
],
|
369 |
+
[
|
370 |
+
"0",
|
371 |
+
"1"
|
372 |
+
],
|
373 |
+
[
|
374 |
+
"academic",
|
375 |
+
"clinical",
|
376 |
+
"other",
|
377 |
+
"pedagogical",
|
378 |
+
"regulatory"
|
379 |
+
],
|
380 |
+
[
|
381 |
+
"background_review",
|
382 |
+
"clinical_guidance",
|
383 |
+
"drug_information",
|
384 |
+
"medical_knowledge",
|
385 |
+
"other",
|
386 |
+
"patient_case",
|
387 |
+
"policy_administrative",
|
388 |
+
"research_findings",
|
389 |
+
"research_methodology"
|
390 |
+
],
|
391 |
+
[
|
392 |
+
"anatomical_pathology",
|
393 |
+
"anesthesiology",
|
394 |
+
"biology_medicine",
|
395 |
+
"cardiology",
|
396 |
+
"dentistry",
|
397 |
+
"dermatology",
|
398 |
+
"digestive_surgery",
|
399 |
+
"endocrinology",
|
400 |
+
"gastroenterology",
|
401 |
+
"general_medicine",
|
402 |
+
"general_surgery",
|
403 |
+
"genetics",
|
404 |
+
"geriatrics",
|
405 |
+
"gynecology_medical",
|
406 |
+
"gynecology_obstetrics",
|
407 |
+
"hematology",
|
408 |
+
"intensive_care",
|
409 |
+
"internal_medicine",
|
410 |
+
"maxillofacial_surgery",
|
411 |
+
"midwifery",
|
412 |
+
"nephrology",
|
413 |
+
"neurology",
|
414 |
+
"neurosurgery",
|
415 |
+
"nuclear_medicine",
|
416 |
+
"occupational_medicine",
|
417 |
+
"oncology",
|
418 |
+
"ophthalmology",
|
419 |
+
"oral_surgery",
|
420 |
+
"orthodontics",
|
421 |
+
"orthopedic_surgery",
|
422 |
+
"other",
|
423 |
+
"otolaryngology",
|
424 |
+
"pediatric_surgery",
|
425 |
+
"pediatrics",
|
426 |
+
"pharmacy",
|
427 |
+
"plastic_surgery",
|
428 |
+
"pneumology",
|
429 |
+
"psychiatry",
|
430 |
+
"public_health",
|
431 |
+
"radiology",
|
432 |
+
"rehabilitation",
|
433 |
+
"rheumatology",
|
434 |
+
"thoracic_surgery",
|
435 |
+
"urologic_surgery",
|
436 |
+
"vascular_surgery"
|
437 |
+
],
|
438 |
+
[
|
439 |
+
"adult",
|
440 |
+
"elderly",
|
441 |
+
"not_specified",
|
442 |
+
"pediatric"
|
443 |
+
],
|
444 |
+
[
|
445 |
+
"female",
|
446 |
+
"male",
|
447 |
+
"not_specified"
|
448 |
+
],
|
449 |
+
[
|
450 |
+
"factual",
|
451 |
+
"hypothetical",
|
452 |
+
"mixed",
|
453 |
+
"opinion",
|
454 |
+
"recommendation"
|
455 |
+
],
|
456 |
+
[
|
457 |
+
"definitive",
|
458 |
+
"possible",
|
459 |
+
"probable",
|
460 |
+
"uncertain"
|
461 |
+
],
|
462 |
+
[
|
463 |
+
"0",
|
464 |
+
"1"
|
465 |
+
],
|
466 |
+
[
|
467 |
+
"0",
|
468 |
+
"1"
|
469 |
+
],
|
470 |
+
[
|
471 |
+
"0",
|
472 |
+
"1"
|
473 |
+
],
|
474 |
+
[
|
475 |
+
"instructions",
|
476 |
+
"none",
|
477 |
+
"questions",
|
478 |
+
"tasks"
|
479 |
+
],
|
480 |
+
[
|
481 |
+
"established",
|
482 |
+
"outdated",
|
483 |
+
"recent_developments"
|
484 |
+
],
|
485 |
+
[
|
486 |
+
"incomplete",
|
487 |
+
"meaningful"
|
488 |
+
]
|
489 |
+
],
|
490 |
+
"layer_norm_eps": 1e-07,
|
491 |
+
"max_position_embeddings": 1025,
|
492 |
+
"model_name": "camembertv2-base",
|
493 |
+
"model_type": "roberta",
|
494 |
+
"num_attention_heads": 12,
|
495 |
+
"num_hidden_layers": 12,
|
496 |
+
"pad_token_id": 0,
|
497 |
+
"position_biased_input": true,
|
498 |
+
"position_embedding_type": "absolute",
|
499 |
+
"problem_types": [
|
500 |
+
"single_label_classification",
|
501 |
+
"single_label_classification",
|
502 |
+
"single_label_classification",
|
503 |
+
"single_label_classification",
|
504 |
+
"single_label_classification",
|
505 |
+
"single_label_classification",
|
506 |
+
"single_label_classification",
|
507 |
+
"single_label_classification",
|
508 |
+
"single_label_classification",
|
509 |
+
"single_label_classification",
|
510 |
+
"single_label_classification",
|
511 |
+
"single_label_classification",
|
512 |
+
"single_label_classification",
|
513 |
+
"single_label_classification",
|
514 |
+
"single_label_classification",
|
515 |
+
"single_label_classification",
|
516 |
+
"single_label_classification",
|
517 |
+
"single_label_classification",
|
518 |
+
"single_label_classification",
|
519 |
+
"single_label_classification"
|
520 |
+
],
|
521 |
+
"torch_dtype": "float32",
|
522 |
+
"transformers_version": "4.55.0",
|
523 |
+
"type_vocab_size": 1,
|
524 |
+
"use_cache": true,
|
525 |
+
"vocab_size": 32768
|
526 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34b2a11e468c40c80b7d6cc7c451b6e2f95f80a544ed8597fa2e7452d976b8d5
|
3 |
+
size 449148280
|
multitask_transformer/__pycache__/configuration_multitask.cpython-312.pyc
ADDED
Binary file (1.26 kB). View file
|
|
multitask_transformer/__pycache__/modeling_multitask.cpython-312.pyc
ADDED
Binary file (10.1 kB). View file
|
|
multitask_transformer/configuration_multitask.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoConfig, PretrainedConfig
|
2 |
+
from transformers.utils import logging
|
3 |
+
|
4 |
+
logger = logging.get_logger(__name__)
|
5 |
+
|
6 |
+
|
7 |
+
class MultiTaskClsConfig(PretrainedConfig):
|
8 |
+
model_type = "multitaskcls"
|
9 |
+
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
problem_types=None,
|
13 |
+
labels_list=None,
|
14 |
+
label2id_dict=None,
|
15 |
+
id2label_dict=None,
|
16 |
+
**kwargs
|
17 |
+
):
|
18 |
+
super().__init__(**kwargs)
|
19 |
+
# create attributes from the keys in kwargs
|
20 |
+
for key, value in kwargs.items():
|
21 |
+
setattr(self, key, value)
|
22 |
+
self.num_tasks = len(labels_list) if labels_list is not None else 0
|
23 |
+
self.labels_list = labels_list
|
24 |
+
self.problem_types = problem_types
|
25 |
+
self.label2id_dict = label2id_dict
|
26 |
+
self.id2label_dict = id2label_dict
|
multitask_transformer/modeling_multitask.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import List, Optional, Tuple, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from transformers import AutoModel, PreTrainedModel
|
8 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
9 |
+
from transformers.models.auto.modeling_auto import MODEL_MAPPING_NAMES
|
10 |
+
from transformers.utils import ModelOutput, logging
|
11 |
+
|
12 |
+
from .configuration_multitask import MultiTaskClsConfig
|
13 |
+
|
14 |
+
logger = logging.get_logger(__name__)
|
15 |
+
|
16 |
+
|
17 |
+
@dataclass
|
18 |
+
class MultiTaskSequenceClassifierOutput(ModelOutput):
|
19 |
+
"""
|
20 |
+
Base class for outputs of sentence classification models.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
24 |
+
Classification (or regression if config.num_labels==1) loss.
|
25 |
+
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
|
26 |
+
Classification (or regression if config.num_labels==1) scores (before SoftMax).
|
27 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
28 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
29 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
30 |
+
|
31 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
32 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
33 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
34 |
+
sequence_length)`.
|
35 |
+
|
36 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
37 |
+
heads.
|
38 |
+
"""
|
39 |
+
|
40 |
+
loss: Optional[torch.FloatTensor] = None
|
41 |
+
logits_list: List[torch.FloatTensor] = None
|
42 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
43 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
44 |
+
|
45 |
+
|
46 |
+
class MultiTaskClsModel(PreTrainedModel):
|
47 |
+
config_class = MultiTaskClsConfig
|
48 |
+
|
49 |
+
def __init__(self, config: MultiTaskClsConfig):
|
50 |
+
super().__init__(config)
|
51 |
+
model_cls_str = MODEL_MAPPING_NAMES[config.model_type]
|
52 |
+
model_cls = getattr(importlib.import_module("transformers"), model_cls_str)
|
53 |
+
transformer_encoder = model_cls._from_config(config)
|
54 |
+
self.model_prefix = transformer_encoder.base_model_prefix
|
55 |
+
# create a variable with the same name as the prefix
|
56 |
+
setattr(self, self.model_prefix, transformer_encoder)
|
57 |
+
|
58 |
+
classifier_dropout = (
|
59 |
+
config.classifier_dropout
|
60 |
+
if config.classifier_dropout is not None
|
61 |
+
else config.hidden_dropout_prob
|
62 |
+
)
|
63 |
+
|
64 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
65 |
+
|
66 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
67 |
+
|
68 |
+
self.num_tasks = len(config.problem_types)
|
69 |
+
self.labels_list = config.labels_list
|
70 |
+
self.num_labels = [
|
71 |
+
len(labels) if labels is not None else 1 for labels in self.labels_list
|
72 |
+
]
|
73 |
+
self.problem_types = (
|
74 |
+
[None] * self.num_tasks
|
75 |
+
if config.problem_types is None
|
76 |
+
else config.problem_types
|
77 |
+
)
|
78 |
+
self.cls_task_heads = nn.ModuleList(
|
79 |
+
[
|
80 |
+
nn.Linear(self.config.hidden_size, _num_labels)
|
81 |
+
for _num_labels in self.num_labels
|
82 |
+
]
|
83 |
+
)
|
84 |
+
|
85 |
+
# Initialize weights and apply final processing
|
86 |
+
self.post_init()
|
87 |
+
|
88 |
+
def _init_weights(self, module):
|
89 |
+
"""Initialize the weights"""
|
90 |
+
if isinstance(module, nn.Linear):
|
91 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
92 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
93 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
94 |
+
if module.bias is not None:
|
95 |
+
module.bias.data.zero_()
|
96 |
+
elif isinstance(module, nn.Embedding):
|
97 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
98 |
+
if module.padding_idx is not None:
|
99 |
+
module.weight.data[module.padding_idx].zero_()
|
100 |
+
elif isinstance(module, nn.LayerNorm):
|
101 |
+
module.bias.data.zero_()
|
102 |
+
module.weight.data.fill_(1.0)
|
103 |
+
|
104 |
+
def forward(
|
105 |
+
self,
|
106 |
+
input_ids: Optional[torch.Tensor] = None,
|
107 |
+
attention_mask: Optional[torch.Tensor] = None,
|
108 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
109 |
+
position_ids: Optional[torch.Tensor] = None,
|
110 |
+
head_mask: Optional[torch.Tensor] = None,
|
111 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
112 |
+
labels: Optional[List[torch.Tensor]] = None,
|
113 |
+
output_attentions: Optional[bool] = None,
|
114 |
+
output_hidden_states: Optional[bool] = None,
|
115 |
+
return_dict: Optional[bool] = None,
|
116 |
+
) -> Union[Tuple[torch.Tensor], List[MultiTaskSequenceClassifierOutput]]:
|
117 |
+
r"""
|
118 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
119 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
120 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
121 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
122 |
+
"""
|
123 |
+
return_dict = (
|
124 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
125 |
+
)
|
126 |
+
|
127 |
+
# get attributes from the self.model_prefix
|
128 |
+
transformer_encoder = getattr(self, self.model_prefix)
|
129 |
+
|
130 |
+
outputs = transformer_encoder(
|
131 |
+
input_ids,
|
132 |
+
attention_mask=attention_mask,
|
133 |
+
token_type_ids=token_type_ids,
|
134 |
+
position_ids=position_ids,
|
135 |
+
head_mask=head_mask,
|
136 |
+
inputs_embeds=inputs_embeds,
|
137 |
+
output_attentions=output_attentions,
|
138 |
+
output_hidden_states=output_hidden_states,
|
139 |
+
return_dict=return_dict,
|
140 |
+
)
|
141 |
+
|
142 |
+
pooled_output = outputs[1]
|
143 |
+
|
144 |
+
pooled_output = self.dropout(pooled_output)
|
145 |
+
|
146 |
+
# List of logits for each task
|
147 |
+
logits_list = [task_head(pooled_output) for task_head in self.cls_task_heads]
|
148 |
+
losses = []
|
149 |
+
loss = None
|
150 |
+
if labels is not None:
|
151 |
+
for logits, task_labels, task_type, num_labels in zip(
|
152 |
+
logits_list, labels, self.problem_types, self.num_labels
|
153 |
+
):
|
154 |
+
if task_type is None:
|
155 |
+
if num_labels == 1:
|
156 |
+
task_type = "regression"
|
157 |
+
elif num_labels > 1 and (
|
158 |
+
task_labels.dtype == torch.long
|
159 |
+
or task_labels.dtype == torch.int
|
160 |
+
):
|
161 |
+
task_type = "single_label_classification"
|
162 |
+
else:
|
163 |
+
task_type = "multi_label_classification"
|
164 |
+
|
165 |
+
if task_type == "regression":
|
166 |
+
loss_fct = nn.MSELoss()
|
167 |
+
if num_labels == 1:
|
168 |
+
loss = loss_fct(logits.squeeze(), task_labels.squeeze())
|
169 |
+
else:
|
170 |
+
loss = loss_fct(logits, task_labels)
|
171 |
+
elif task_type == "single_label_classification":
|
172 |
+
loss_fct = nn.CrossEntropyLoss()
|
173 |
+
if task_labels.shape == logits.view(-1, num_labels).shape:
|
174 |
+
loss = loss_fct(logits.view(-1, num_labels), task_labels)
|
175 |
+
else:
|
176 |
+
loss = loss_fct(
|
177 |
+
logits.view(-1, num_labels), task_labels.view(-1)
|
178 |
+
)
|
179 |
+
elif task_type == "multi_label_classification":
|
180 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
181 |
+
loss = loss_fct(logits, task_labels)
|
182 |
+
else:
|
183 |
+
raise ValueError(f"Task type '{task_type}' not supported")
|
184 |
+
|
185 |
+
losses.append(loss)
|
186 |
+
|
187 |
+
loss = torch.stack(losses).sum()
|
188 |
+
|
189 |
+
if not return_dict:
|
190 |
+
output = (logits_list,) + outputs[2:]
|
191 |
+
return ((loss,) + output) if loss is not None else output
|
192 |
+
|
193 |
+
return MultiTaskSequenceClassifierOutput(
|
194 |
+
loss=loss,
|
195 |
+
logits_list=logits_list,
|
196 |
+
hidden_states=outputs.hidden_states,
|
197 |
+
attentions=outputs.attentions,
|
198 |
+
)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": true,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "[PAD]",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "[CLS]",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "[SEP]",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "[UNK]",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"4": {
|
37 |
+
"content": "[MASK]",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"bos_token": "[CLS]",
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "[CLS]",
|
48 |
+
"eos_token": "[SEP]",
|
49 |
+
"errors": "replace",
|
50 |
+
"extra_special_tokens": {},
|
51 |
+
"mask_token": "[MASK]",
|
52 |
+
"model_max_length": 1024,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"sep_token": "[SEP]",
|
55 |
+
"tokenizer_class": "RobertaTokenizer",
|
56 |
+
"trim_offsets": true,
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|