File size: 5,140 Bytes
91db580 03e598c 1168102 03e598c 1168102 03e598c 1168102 03e598c cab7fde 91db580 1168102 91db580 1168102 91db580 d5433c6 91db580 cb4fd22 1168102 91db580 cb4fd22 d5433c6 91db580 1168102 91db580 d5433c6 91db580 1168102 91db580 1168102 91db580 1168102 91db580 1168102 91db580 1168102 91db580 1168102 91db580 1168102 83ca45d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
---
license: cc-by-nc-4.0
library_name: peft
tags:
- trl
- sft
- conversational
- generated_from_trainer
- qwen2
base_model: Qwen/Qwen1.5-7B-Chat
model-index:
- name: Qwen1.5-7B-Dutch-Chat-Sft
results: []
language:
- nl
datasets:
- BramVanroy/ultrachat_200k_dutch
pipeline_tag: text-generation
inference: false
---
# Qwen1.5-7B-Dutch-Chat-Sft
## Model description
This finetuned model is an adapter model based on [Qwen/Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat).
Finetuning was performed on the Dutch [BramVanroy/ultrachat_200k_dutch](https://huggingface.co/datasets/BramVanroy/ultrachat_200k_dutch) dataset.
## Model usage
A basic example of how to use the finetuned model.
```
import torch
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer
device = 'cuda'
model_name = 'robinsmits/Qwen1.5-7B-Dutch-Chat-Sft'
model = AutoPeftModelForCausalLM.from_pretrained(model_name,
device_map = "auto",
load_in_4bit = True,
torch_dtype = torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_name)
messages = [{"role": "user", "content": "Hoi hoe gaat het ermee? Wat kun je me vertellen over appels?"}]
encoded_ids = tokenizer.apply_chat_template(messages,
add_generation_prompt = True,
return_tensors = "pt")
generated_ids = model.generate(input_ids = encoded_ids.to(device),
max_new_tokens = 256,
do_sample = True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```
Below the chat template with the generated output.
```
<|im_start|>system
Je bent een behulpzame AI assistent<|im_end|>
<|im_start|>user
Hoi hoe gaat het ermee? Wat kun je me vertellen over appels?<|im_end|>
<|im_start|>assistant
Hallo! Appels zijn fruit dat heel populair is. Ze zijn lekker en er zijn veel verschillende soorten, zoals rode, witte en bruine appels. Je kunt ze eten met wat kaas of op een salade voor een fris gerecht. Het is ook goed voor je gezondheid omdat ze rijk zijn aan vitamine C en vezels.<|im_end|>
```
## Intended uses & limitations
As with all LLM's this model can also experience bias and hallucinations. Regardless of how you use this model always perform the necessary testing and validation.
The used dataset does not allow commercial usage.
## Training and evaluation data
The training notebook is available at the following link: [Qwen1_5_7B_Dutch_Chat_SFT](https://github.com/RobinSmits/Dutch-LLMs/blob/main/Qwen1_5_7B_Dutch_Chat_SFT.ipynb)
Training was performed with Google Colab PRO on a A100 - 40GB.
As the amount of data was more than would fit within the maximum 24 hour session that Google Colab PRO allows I split the dataset in 2 equal parts. Training for each part lasted around 14 hours. In the second part I enabled 'resume_from_checkpoint' to continue the training.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- training_steps: 1466
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.4493 | 0.2 | 146 | 1.4083 |
| 1.3638 | 0.4 | 292 | 1.3213 |
| 1.3146 | 0.6 | 438 | 1.2731 |
| 1.2756 | 0.8 | 584 | 1.2400 |
| 1.2533 | 1.0 | 730 | 1.2165 |
| 1.2388 | 1.19 | 876 | 1.1998 |
| 1.2246 | 1.39 | 1022 | 1.1882 |
| 1.211 | 1.59 | 1168 | 1.1802 |
| 1.204 | 1.79 | 1314 | 1.1763 |
| 1.2041 | 1.99 | 1460 | 1.1756 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2
## Citation
Thanks to the creators of Qwen1.5 for there great work!
```
@article{qwen,
title={Qwen Technical Report},
author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu},
journal={arXiv preprint arXiv:2309.16609},
year={2023}
}
``` |