Training checkpoint 2000 - 0.0B tokens
Browse files- README.md +68 -0
- checkpoint_2000.pt +3 -0
- config.json +14 -0
README.md
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
license: mit
|
| 4 |
+
tags:
|
| 5 |
+
- spiking-neural-networks
|
| 6 |
+
- language-modeling
|
| 7 |
+
- neuromorphic
|
| 8 |
+
- energy-efficient
|
| 9 |
+
- biological-ai
|
| 10 |
+
datasets:
|
| 11 |
+
- fineweb-5B
|
| 12 |
+
pipeline_tag: text-generation
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
# 🧠 Spiking Neural Network Language Model - Training Checkpoint
|
| 16 |
+
|
| 17 |
+
**Live training checkpoint from the world's first large-scale spiking language model!**
|
| 18 |
+
|
| 19 |
+
## Current Training Status
|
| 20 |
+
|
| 21 |
+
- **Training Step**: 2,000
|
| 22 |
+
- **Tokens Processed**: 0.02B tokens
|
| 23 |
+
- **Current Loss**: 9.8659
|
| 24 |
+
- **Spike Rate**: 0.0115
|
| 25 |
+
- **Learning Rate**: 1.02e-05
|
| 26 |
+
|
| 27 |
+
## Model Architecture
|
| 28 |
+
|
| 29 |
+
- **Parameters**: ~54M
|
| 30 |
+
- **Architecture**: 12-layer Spiking LTC Network
|
| 31 |
+
- **Hidden Size**: 768
|
| 32 |
+
- **Sequence Length**: 1024
|
| 33 |
+
- **Multi-timescale Processing**: Fast → Medium → Slow layers
|
| 34 |
+
|
| 35 |
+
## Training Details
|
| 36 |
+
|
| 37 |
+
- **Dataset**: PatrickHaller/fineweb-5B
|
| 38 |
+
- **Target**: 3 epochs (~15B tokens total)
|
| 39 |
+
- **Biological Dynamics**: Adaptive thresholds, refractory periods
|
| 40 |
+
- **Energy Efficiency**: ~5% neuron activation vs 100% in Transformers
|
| 41 |
+
|
| 42 |
+
## Scientific Significance
|
| 43 |
+
|
| 44 |
+
This represents ongoing training of the first large-scale spiking neural network for language modeling, demonstrating:
|
| 45 |
+
|
| 46 |
+
1. **Biological neural dynamics** can learn language at scale
|
| 47 |
+
2. **Energy efficiency** through sparse neural firing
|
| 48 |
+
3. **Multi-timescale processing** for hierarchical understanding
|
| 49 |
+
|
| 50 |
+
## Usage
|
| 51 |
+
|
| 52 |
+
```python
|
| 53 |
+
# Download this checkpoint
|
| 54 |
+
from huggingface_hub import hf_hub_download
|
| 55 |
+
checkpoint = hf_hub_download(
|
| 56 |
+
repo_id="rootxhacker/piking-llm-5b-3epochs-exp",
|
| 57 |
+
filename="checkpoint_2000.pt"
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# Load with custom spiking model code
|
| 61 |
+
# (See full implementation for complete usage)
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
---
|
| 65 |
+
|
| 66 |
+
**🔬 This is live research in progress! Check back for updates as training continues.**
|
| 67 |
+
|
| 68 |
+
**Training Progress**: 0.1% complete towards 15B tokens
|
checkpoint_2000.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a2525c357147a84397048617fc112cfaebe7389e44328d60cac9eb224f13894d
|
| 3 |
+
size 999026318
|
config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "spiking_llm",
|
| 3 |
+
"vocab_size": 50257,
|
| 4 |
+
"hidden_size": 768,
|
| 5 |
+
"num_layers": 12,
|
| 6 |
+
"max_seq_length": 1024,
|
| 7 |
+
"training_step": 2000,
|
| 8 |
+
"tokens_processed": 20480000,
|
| 9 |
+
"loss": 9.865856721571749,
|
| 10 |
+
"spike_rate": 0.011451726761236444,
|
| 11 |
+
"learning_rate": 1.019965406348427e-05,
|
| 12 |
+
"epoch": 0.004096,
|
| 13 |
+
"progress_percent": 0.13653368285956147
|
| 14 |
+
}
|