--- library_name: transformers license: apache-2.0 base_model: allenai/led-base-16384 tags: - generated_from_trainer metrics: - rouge model-index: - name: led-base-16384-finetune-paperLedWeSAttG0.1 results: [] --- # led-base-16384-finetune-paperLedWeSAttG0.1 This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2011 - Rouge1: 35.5263 - Rouge2: 7.9295 - Rougel: 18.4211 - Rougelsum: 34.6491 - Gen Len: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 3.2793 | 0.9993 | 1128 | 3.3552 | 31.1966 | 6.4378 | 17.9487 | 31.1966 | 1.0 | | 3.071 | 1.9993 | 2256 | 3.2495 | 33.7182 | 9.2807 | 16.1663 | 33.2564 | 1.0 | | 2.9601 | 2.9993 | 3384 | 3.2011 | 35.5263 | 7.9295 | 18.4211 | 34.6491 | 1.0 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.6.0+cu124 - Datasets 2.14.4 - Tokenizers 0.21.1