--- library_name: transformers license: apache-2.0 base_model: allenai/led-large-16384 tags: - generated_from_trainer metrics: - rouge model-index: - name: led-large-16384-finetune-paperLedWeSAttG0.1 results: [] --- # led-large-16384-finetune-paperLedWeSAttG0.1 This model is a fine-tuned version of [allenai/led-large-16384](https://huggingface.co/allenai/led-large-16384) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9013 - Rouge1: 35.4319 - Rouge2: 9.1043 - Rougel: 16.1054 - Rougelsum: 33.675 - Gen Len: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.9556 | 0.9993 | 1128 | 3.0039 | 35.2679 | 8.0717 | 17.8571 | 33.4821 | 1.0 | | 2.7602 | 1.9993 | 2256 | 2.9080 | 35.0731 | 6.7086 | 17.5365 | 32.9854 | 1.0 | | 2.63 | 2.9993 | 3384 | 2.9013 | 35.4319 | 9.1043 | 16.1054 | 33.675 | 1.0 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.6.0+cu124 - Datasets 2.14.4 - Tokenizers 0.21.1