init: uploading model and architecture
Browse files- README.md +53 -3
- cifar10_classes.json +1 -0
- pytorch_model.bin +3 -0
- vit_model.py +11 -0
README.md
CHANGED
|
@@ -1,3 +1,53 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: timm
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
datasets:
|
| 5 |
+
- cifar10
|
| 6 |
+
tags:
|
| 7 |
+
- vision
|
| 8 |
+
- image-classification
|
| 9 |
+
- cifar10
|
| 10 |
+
- vit
|
| 11 |
+
model-index:
|
| 12 |
+
- name: vit-cifar10
|
| 13 |
+
results:
|
| 14 |
+
- task: {type: image-classification}
|
| 15 |
+
dataset: {name: CIFAR-10, type: cifar10}
|
| 16 |
+
metrics:
|
| 17 |
+
- type: accuracy
|
| 18 |
+
value: 0.95 # replace with your test accuracy
|
| 19 |
+
---
|
| 20 |
+
|
| 21 |
+
# ViT Base (patch16, 224) fine-tuned on CIFAR-10
|
| 22 |
+
|
| 23 |
+
Trained on CIFAR-10 (10 classes). Weights saved as a plain PyTorch `state_dict` (`pytorch_model.bin`).
|
| 24 |
+
Architecture is defined in `vit_model.py` (uses `timm`).
|
| 25 |
+
|
| 26 |
+
## Usage
|
| 27 |
+
|
| 28 |
+
```python
|
| 29 |
+
import torch, json
|
| 30 |
+
from huggingface_hub import hf_hub_download
|
| 31 |
+
import importlib.util
|
| 32 |
+
|
| 33 |
+
repo_id = "roylvzn/vit-cifar10"
|
| 34 |
+
|
| 35 |
+
# fetch files
|
| 36 |
+
weights_path = hf_hub_download(repo_id, "pytorch_model.bin")
|
| 37 |
+
model_py = hf_hub_download(repo_id, "vit_model.py")
|
| 38 |
+
classes_path = hf_hub_download(repo_id, "classes.json")
|
| 39 |
+
|
| 40 |
+
# import vit_model.py dynamically
|
| 41 |
+
spec = importlib.util.spec_from_file_location("vit_model", model_py)
|
| 42 |
+
vm = importlib.util.module_from_spec(spec); spec.loader.exec_module(vm)
|
| 43 |
+
|
| 44 |
+
# build model and load weights
|
| 45 |
+
model = vm.ViTModel(num_classes=10, pretrained=False)
|
| 46 |
+
state = torch.load(weights_path, map_location="cpu")
|
| 47 |
+
model.load_state_dict(state)
|
| 48 |
+
model.eval()
|
| 49 |
+
|
| 50 |
+
with open(classes_path) as f:
|
| 51 |
+
classes = json.load(f)
|
| 52 |
+
|
| 53 |
+
# inference expects 224x224 ImageNet-normalized tensors
|
cifar10_classes.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cad4c8468fd4eab092a7b0c7f6c7bdd9b0bf4c337d255967e81594736b3beff2
|
| 3 |
+
size 343286237
|
vit_model.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import timm
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
class ViTModel(nn.Module):
|
| 5 |
+
def __init__(self, num_classes):
|
| 6 |
+
super(ViTModel, self).__init__()
|
| 7 |
+
self.model = timm.create_model('vit_base_patch16_224', pretrained=False)
|
| 8 |
+
self.model.head = nn.Linear(self.model.head.in_features,num_classes)
|
| 9 |
+
|
| 10 |
+
def forward(self, x):
|
| 11 |
+
return self.model(x)
|