init: uploading model and architecture
Browse files- README.md +53 -3
- cifar10_classes.json +1 -0
- pytorch_model.bin +3 -0
- vit_model.py +11 -0
README.md
CHANGED
@@ -1,3 +1,53 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: timm
|
3 |
+
license: apache-2.0
|
4 |
+
datasets:
|
5 |
+
- cifar10
|
6 |
+
tags:
|
7 |
+
- vision
|
8 |
+
- image-classification
|
9 |
+
- cifar10
|
10 |
+
- vit
|
11 |
+
model-index:
|
12 |
+
- name: vit-cifar10
|
13 |
+
results:
|
14 |
+
- task: {type: image-classification}
|
15 |
+
dataset: {name: CIFAR-10, type: cifar10}
|
16 |
+
metrics:
|
17 |
+
- type: accuracy
|
18 |
+
value: 0.95 # replace with your test accuracy
|
19 |
+
---
|
20 |
+
|
21 |
+
# ViT Base (patch16, 224) fine-tuned on CIFAR-10
|
22 |
+
|
23 |
+
Trained on CIFAR-10 (10 classes). Weights saved as a plain PyTorch `state_dict` (`pytorch_model.bin`).
|
24 |
+
Architecture is defined in `vit_model.py` (uses `timm`).
|
25 |
+
|
26 |
+
## Usage
|
27 |
+
|
28 |
+
```python
|
29 |
+
import torch, json
|
30 |
+
from huggingface_hub import hf_hub_download
|
31 |
+
import importlib.util
|
32 |
+
|
33 |
+
repo_id = "roylvzn/vit-cifar10"
|
34 |
+
|
35 |
+
# fetch files
|
36 |
+
weights_path = hf_hub_download(repo_id, "pytorch_model.bin")
|
37 |
+
model_py = hf_hub_download(repo_id, "vit_model.py")
|
38 |
+
classes_path = hf_hub_download(repo_id, "classes.json")
|
39 |
+
|
40 |
+
# import vit_model.py dynamically
|
41 |
+
spec = importlib.util.spec_from_file_location("vit_model", model_py)
|
42 |
+
vm = importlib.util.module_from_spec(spec); spec.loader.exec_module(vm)
|
43 |
+
|
44 |
+
# build model and load weights
|
45 |
+
model = vm.ViTModel(num_classes=10, pretrained=False)
|
46 |
+
state = torch.load(weights_path, map_location="cpu")
|
47 |
+
model.load_state_dict(state)
|
48 |
+
model.eval()
|
49 |
+
|
50 |
+
with open(classes_path) as f:
|
51 |
+
classes = json.load(f)
|
52 |
+
|
53 |
+
# inference expects 224x224 ImageNet-normalized tensors
|
cifar10_classes.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cad4c8468fd4eab092a7b0c7f6c7bdd9b0bf4c337d255967e81594736b3beff2
|
3 |
+
size 343286237
|
vit_model.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import timm
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
class ViTModel(nn.Module):
|
5 |
+
def __init__(self, num_classes):
|
6 |
+
super(ViTModel, self).__init__()
|
7 |
+
self.model = timm.create_model('vit_base_patch16_224', pretrained=False)
|
8 |
+
self.model.head = nn.Linear(self.model.head.in_features,num_classes)
|
9 |
+
|
10 |
+
def forward(self, x):
|
11 |
+
return self.model(x)
|