Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- added_tokens.json +24 -0
- config.json +29 -0
- generation_config.json +15 -0
- global_step7000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- global_step7000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- global_step7000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- global_step7000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- global_step7000/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- global_step7000/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- global_step7000/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- global_step7000/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- latest +1 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +212 -0
- trainer_state.json +1994 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +760 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen2ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"eos_token_id": 151645,
|
7 |
+
"hidden_act": "silu",
|
8 |
+
"hidden_size": 896,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"intermediate_size": 4864,
|
11 |
+
"max_position_embeddings": 32768,
|
12 |
+
"max_window_layers": 21,
|
13 |
+
"model_type": "qwen2",
|
14 |
+
"num_attention_heads": 14,
|
15 |
+
"num_hidden_layers": 24,
|
16 |
+
"num_key_value_heads": 2,
|
17 |
+
"pad_token_id": 151654,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"rope_scaling": null,
|
20 |
+
"rope_theta": 1000000.0,
|
21 |
+
"sliding_window": null,
|
22 |
+
"tie_word_embeddings": true,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.51.3",
|
25 |
+
"unsloth_fixed": true,
|
26 |
+
"use_cache": false,
|
27 |
+
"use_sliding_window": false,
|
28 |
+
"vocab_size": 151936
|
29 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"max_length": 32768,
|
9 |
+
"pad_token_id": 151654,
|
10 |
+
"repetition_penalty": 1.1,
|
11 |
+
"temperature": 0.7,
|
12 |
+
"top_k": 20,
|
13 |
+
"top_p": 0.8,
|
14 |
+
"transformers_version": "4.51.3"
|
15 |
+
}
|
global_step7000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0852d1fbff16422886263593984c42479de79563c30e9657704a99170ba0aad
|
3 |
+
size 1482103621
|
global_step7000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:903383d27744021bfe73816fc4e9492dc00d25ea9cf56adcf0344478976e2559
|
3 |
+
size 1482103621
|
global_step7000/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f8ed521b5f01a15a4d97666f4041bc32c498777bce82b9b12b3ebdff8379a3b
|
3 |
+
size 1482103621
|
global_step7000/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:458060de5e82f671d2d76485c86ed2a2e63cd1c72b2d51d7d2c96c166b948231
|
3 |
+
size 1482103621
|
global_step7000/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:754e68fc6e83a53cfbe61e3f715249a22778fd051166234714eed25a932631d4
|
3 |
+
size 143059
|
global_step7000/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a31b45f44056f70d8be3b7c623112b13c96bf967dc215e8d91db97717afc262a
|
3 |
+
size 142995
|
global_step7000/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbd19837ad97e20a7ed9f7b640a347732c417b977e9c85b9702288a8ae175626
|
3 |
+
size 142995
|
global_step7000/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:feb1eab726fdfda9f2cd5f9dffaae579f5b8ce6eabd287421d00e6e2c01d1805
|
3 |
+
size 142995
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step7000
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da75b70e7761305896f20ed419b1ce89f132e4dc41c9dbfff095105888bf3488
|
3 |
+
size 988097824
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fac59f8685f9987cb2f2c0813fb063d93985dae8ca7b3e3348bbd3b9962e8e8e
|
3 |
+
size 15429
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2c41082d86bdc69b01102c0ecce9462330f04cdaa135203d57af14ff58941c3
|
3 |
+
size 15365
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:845609fc37929e5a312464583328e4fd9732b30e9807636ea1f368cfe52393e2
|
3 |
+
size 15429
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c5052e84f057d012da47071b672bc71bcf008104c8d05356cd8037609551ecd
|
3 |
+
size 15429
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:412035590d0899313ef5cc734e77cc09a9b1b46dab5e47596b0bbf94ebdd86e4
|
3 |
+
size 1465
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|vision_pad|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64e71213db910f5cafa86d35091f37393dcc344b1bbc34091d1b3eed4cca01d5
|
3 |
+
size 11422064
|
tokenizer_config.json
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"max_length": null,
|
204 |
+
"model_max_length": 32768,
|
205 |
+
"pad_to_multiple_of": null,
|
206 |
+
"pad_token": "<|vision_pad|>",
|
207 |
+
"pad_token_type_id": 0,
|
208 |
+
"padding_side": "right",
|
209 |
+
"split_special_tokens": false,
|
210 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
211 |
+
"unk_token": null
|
212 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,1994 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 1.1678065054211844,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 7000,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"clip_ratio": 0.00699951171875,
|
14 |
+
"completion_length": 1024.0,
|
15 |
+
"epoch": 0.008340283569641367,
|
16 |
+
"grad_norm": 14.120885699967895,
|
17 |
+
"kl": 2.8944024658203125,
|
18 |
+
"learning_rate": 1.9945510147345007e-06,
|
19 |
+
"loss": 0.0458,
|
20 |
+
"num_tokens": 608832.0,
|
21 |
+
"reward": -3.234580533504486,
|
22 |
+
"reward_std": 3.1962914752960203,
|
23 |
+
"rewards/generate_all_rewards": -3.234580533504486,
|
24 |
+
"step": 50
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"clip_ratio": 0.005478515625,
|
28 |
+
"completion_length": 1024.0,
|
29 |
+
"epoch": 0.016680567139282735,
|
30 |
+
"grad_norm": 5.506146217443755,
|
31 |
+
"kl": 4.24171875,
|
32 |
+
"learning_rate": 1.9889908256880732e-06,
|
33 |
+
"loss": 0.0764,
|
34 |
+
"num_tokens": 1207352.0,
|
35 |
+
"reward": -1.5938849544525147,
|
36 |
+
"reward_std": 3.6290176486968995,
|
37 |
+
"rewards/generate_all_rewards": -1.5938849544525147,
|
38 |
+
"step": 100
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"clip_ratio": 0.006314697265625,
|
42 |
+
"completion_length": 1024.0,
|
43 |
+
"epoch": 0.025020850708924104,
|
44 |
+
"grad_norm": 14.06130768102936,
|
45 |
+
"kl": 6.4025,
|
46 |
+
"learning_rate": 1.9834306366416458e-06,
|
47 |
+
"loss": 0.121,
|
48 |
+
"num_tokens": 1817552.0,
|
49 |
+
"reward": -0.14887901425361633,
|
50 |
+
"reward_std": 3.041101009249687,
|
51 |
+
"rewards/generate_all_rewards": -0.14887901425361633,
|
52 |
+
"step": 150
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"clip_ratio": 0.008756103515625,
|
56 |
+
"completion_length": 1024.0,
|
57 |
+
"epoch": 0.03336113427856547,
|
58 |
+
"grad_norm": 3.8576112038400194,
|
59 |
+
"kl": 6.95140625,
|
60 |
+
"learning_rate": 1.9778704475952183e-06,
|
61 |
+
"loss": 0.1366,
|
62 |
+
"num_tokens": 2408832.0,
|
63 |
+
"reward": 0.1574733567237854,
|
64 |
+
"reward_std": 3.0124819111824035,
|
65 |
+
"rewards/generate_all_rewards": 0.1574733567237854,
|
66 |
+
"step": 200
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"clip_ratio": 0.00777587890625,
|
70 |
+
"completion_length": 1024.0,
|
71 |
+
"epoch": 0.041701417848206836,
|
72 |
+
"grad_norm": 8.583233886890447,
|
73 |
+
"kl": 4.32921875,
|
74 |
+
"learning_rate": 1.9723102585487904e-06,
|
75 |
+
"loss": 0.0816,
|
76 |
+
"num_tokens": 3012520.0,
|
77 |
+
"reward": 1.650909082889557,
|
78 |
+
"reward_std": 2.1874516403675077,
|
79 |
+
"rewards/generate_all_rewards": 1.650909082889557,
|
80 |
+
"step": 250
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"clip_ratio": 0.0061767578125,
|
84 |
+
"completion_length": 1024.0,
|
85 |
+
"epoch": 0.05004170141784821,
|
86 |
+
"grad_norm": 9.521656811246332,
|
87 |
+
"kl": 2.9395703125,
|
88 |
+
"learning_rate": 1.966750069502363e-06,
|
89 |
+
"loss": 0.0528,
|
90 |
+
"num_tokens": 3635196.0,
|
91 |
+
"reward": 2.0889700829982756,
|
92 |
+
"reward_std": 1.676103963404894,
|
93 |
+
"rewards/generate_all_rewards": 2.0889700829982756,
|
94 |
+
"step": 300
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"clip_ratio": 0.00710205078125,
|
98 |
+
"completion_length": 1024.0,
|
99 |
+
"epoch": 0.058381984987489574,
|
100 |
+
"grad_norm": 3.2056926065848876,
|
101 |
+
"kl": 3.523515625,
|
102 |
+
"learning_rate": 1.9611898804559355e-06,
|
103 |
+
"loss": 0.0655,
|
104 |
+
"num_tokens": 4244948.0,
|
105 |
+
"reward": 2.5839235186576843,
|
106 |
+
"reward_std": 1.675377692580223,
|
107 |
+
"rewards/generate_all_rewards": 2.5839235186576843,
|
108 |
+
"step": 350
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"clip_ratio": 0.0070361328125,
|
112 |
+
"completion_length": 1024.0,
|
113 |
+
"epoch": 0.06672226855713094,
|
114 |
+
"grad_norm": 5.870128860699156,
|
115 |
+
"kl": 3.76171875,
|
116 |
+
"learning_rate": 1.955629691409508e-06,
|
117 |
+
"loss": 0.07,
|
118 |
+
"num_tokens": 4843180.0,
|
119 |
+
"reward": 1.3626538455486297,
|
120 |
+
"reward_std": 1.5572759065032005,
|
121 |
+
"rewards/generate_all_rewards": 1.3626538455486297,
|
122 |
+
"step": 400
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"clip_ratio": 0.007911376953125,
|
126 |
+
"completion_length": 1024.0,
|
127 |
+
"epoch": 0.0750625521267723,
|
128 |
+
"grad_norm": 3.5520731952805487,
|
129 |
+
"kl": 3.944765625,
|
130 |
+
"learning_rate": 1.95006950236308e-06,
|
131 |
+
"loss": 0.0754,
|
132 |
+
"num_tokens": 5447660.0,
|
133 |
+
"reward": 2.8184473848342897,
|
134 |
+
"reward_std": 1.537802910655737,
|
135 |
+
"rewards/generate_all_rewards": 2.8184473848342897,
|
136 |
+
"step": 450
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"clip_ratio": 0.013525390625,
|
140 |
+
"completion_length": 1024.0,
|
141 |
+
"epoch": 0.08340283569641367,
|
142 |
+
"grad_norm": 7.328124794124316,
|
143 |
+
"kl": 3.373125,
|
144 |
+
"learning_rate": 1.9445093133166527e-06,
|
145 |
+
"loss": 0.0614,
|
146 |
+
"num_tokens": 6051428.0,
|
147 |
+
"reward": 2.4807280468940736,
|
148 |
+
"reward_std": 0.9742915752530098,
|
149 |
+
"rewards/generate_all_rewards": 2.4807280468940736,
|
150 |
+
"step": 500
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"clip_ratio": 0.010689697265625,
|
154 |
+
"completion_length": 1024.0,
|
155 |
+
"epoch": 0.09174311926605505,
|
156 |
+
"grad_norm": 8.879346331019656,
|
157 |
+
"kl": 3.567578125,
|
158 |
+
"learning_rate": 1.938949124270225e-06,
|
159 |
+
"loss": 0.0664,
|
160 |
+
"num_tokens": 6652180.0,
|
161 |
+
"reward": 2.4438777142763137,
|
162 |
+
"reward_std": 1.1059524276852608,
|
163 |
+
"rewards/generate_all_rewards": 2.4438777142763137,
|
164 |
+
"step": 550
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"clip_ratio": 0.006470947265625,
|
168 |
+
"completion_length": 1024.0,
|
169 |
+
"epoch": 0.10008340283569642,
|
170 |
+
"grad_norm": 15.87593845075513,
|
171 |
+
"kl": 1.68625,
|
172 |
+
"learning_rate": 1.9333889352237977e-06,
|
173 |
+
"loss": 0.0261,
|
174 |
+
"num_tokens": 7262336.0,
|
175 |
+
"reward": 3.7379005312919618,
|
176 |
+
"reward_std": 0.9547000896930694,
|
177 |
+
"rewards/generate_all_rewards": 3.7379005312919618,
|
178 |
+
"step": 600
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"clip_ratio": 0.008651123046875,
|
182 |
+
"completion_length": 1024.0,
|
183 |
+
"epoch": 0.10842368640533778,
|
184 |
+
"grad_norm": 16.184176794809037,
|
185 |
+
"kl": 1.2030859375,
|
186 |
+
"learning_rate": 1.92782874617737e-06,
|
187 |
+
"loss": 0.0164,
|
188 |
+
"num_tokens": 7853484.0,
|
189 |
+
"reward": 3.1192458760738373,
|
190 |
+
"reward_std": 0.7382513232529163,
|
191 |
+
"rewards/generate_all_rewards": 3.1192458760738373,
|
192 |
+
"step": 650
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"clip_ratio": 0.007640380859375,
|
196 |
+
"completion_length": 1024.0,
|
197 |
+
"epoch": 0.11676396997497915,
|
198 |
+
"grad_norm": 12.281047071498108,
|
199 |
+
"kl": 3.4060546875,
|
200 |
+
"learning_rate": 1.9222685571309424e-06,
|
201 |
+
"loss": 0.0604,
|
202 |
+
"num_tokens": 8459596.0,
|
203 |
+
"reward": 3.791183285713196,
|
204 |
+
"reward_std": 1.1176388543844222,
|
205 |
+
"rewards/generate_all_rewards": 3.791183285713196,
|
206 |
+
"step": 700
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"clip_ratio": 0.00601806640625,
|
210 |
+
"completion_length": 1024.0,
|
211 |
+
"epoch": 0.12510425354462051,
|
212 |
+
"grad_norm": 10.59835515773422,
|
213 |
+
"kl": 1.3465234375,
|
214 |
+
"learning_rate": 1.916708368084515e-06,
|
215 |
+
"loss": 0.0197,
|
216 |
+
"num_tokens": 9062924.0,
|
217 |
+
"reward": 3.9991130876541137,
|
218 |
+
"reward_std": 0.933748829215765,
|
219 |
+
"rewards/generate_all_rewards": 3.9991130876541137,
|
220 |
+
"step": 750
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"clip_ratio": 0.008304443359375,
|
224 |
+
"completion_length": 1024.0,
|
225 |
+
"epoch": 0.13344453711426188,
|
226 |
+
"grad_norm": 4.399868599163885,
|
227 |
+
"kl": 2.779375,
|
228 |
+
"learning_rate": 1.911148179038087e-06,
|
229 |
+
"loss": 0.0503,
|
230 |
+
"num_tokens": 9676376.0,
|
231 |
+
"reward": 3.1121265506744384,
|
232 |
+
"reward_std": 0.8076464046537876,
|
233 |
+
"rewards/generate_all_rewards": 3.1121265506744384,
|
234 |
+
"step": 800
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"clip_ratio": 0.00646484375,
|
238 |
+
"completion_length": 1024.0,
|
239 |
+
"epoch": 0.14178482068390325,
|
240 |
+
"grad_norm": 12.33402253801181,
|
241 |
+
"kl": 2.50671875,
|
242 |
+
"learning_rate": 1.9055879899916596e-06,
|
243 |
+
"loss": 0.0423,
|
244 |
+
"num_tokens": 10291400.0,
|
245 |
+
"reward": 2.333748939037323,
|
246 |
+
"reward_std": 0.9894427044689655,
|
247 |
+
"rewards/generate_all_rewards": 2.333748939037323,
|
248 |
+
"step": 850
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"clip_ratio": 0.01214111328125,
|
252 |
+
"completion_length": 1024.0,
|
253 |
+
"epoch": 0.1501251042535446,
|
254 |
+
"grad_norm": 14.289114263028262,
|
255 |
+
"kl": 1.8778515625,
|
256 |
+
"learning_rate": 1.9000278009452319e-06,
|
257 |
+
"loss": 0.0295,
|
258 |
+
"num_tokens": 10887736.0,
|
259 |
+
"reward": 2.980680326223373,
|
260 |
+
"reward_std": 0.6083575973659754,
|
261 |
+
"rewards/generate_all_rewards": 2.980680326223373,
|
262 |
+
"step": 900
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"clip_ratio": 0.009613037109375,
|
266 |
+
"completion_length": 1024.0,
|
267 |
+
"epoch": 0.15846538782318598,
|
268 |
+
"grad_norm": 10.14315612638421,
|
269 |
+
"kl": 2.92171875,
|
270 |
+
"learning_rate": 1.8944676118988046e-06,
|
271 |
+
"loss": 0.0497,
|
272 |
+
"num_tokens": 11494176.0,
|
273 |
+
"reward": 2.402811622619629,
|
274 |
+
"reward_std": 1.0233210255205631,
|
275 |
+
"rewards/generate_all_rewards": 2.402811622619629,
|
276 |
+
"step": 950
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"clip_ratio": 0.00775146484375,
|
280 |
+
"completion_length": 1024.0,
|
281 |
+
"epoch": 0.16680567139282734,
|
282 |
+
"grad_norm": 3.95911283332978,
|
283 |
+
"kl": 1.9640625,
|
284 |
+
"learning_rate": 1.888907422852377e-06,
|
285 |
+
"loss": 0.0329,
|
286 |
+
"num_tokens": 12103840.0,
|
287 |
+
"reward": 3.709632108211517,
|
288 |
+
"reward_std": 0.8795299279689789,
|
289 |
+
"rewards/generate_all_rewards": 3.709632108211517,
|
290 |
+
"step": 1000
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"clip_ratio": 0.009173583984375,
|
294 |
+
"completion_length": 1024.0,
|
295 |
+
"epoch": 0.17514595496246874,
|
296 |
+
"grad_norm": 2.404205261708653,
|
297 |
+
"kl": 2.656328125,
|
298 |
+
"learning_rate": 1.8833472338059493e-06,
|
299 |
+
"loss": 0.0456,
|
300 |
+
"num_tokens": 12706496.0,
|
301 |
+
"reward": 3.0651380997896194,
|
302 |
+
"reward_std": 0.8471601485460997,
|
303 |
+
"rewards/generate_all_rewards": 3.0651380997896194,
|
304 |
+
"step": 1050
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"clip_ratio": 0.00503662109375,
|
308 |
+
"completion_length": 1024.0,
|
309 |
+
"epoch": 0.1834862385321101,
|
310 |
+
"grad_norm": 16.0574388547409,
|
311 |
+
"kl": 2.2871875,
|
312 |
+
"learning_rate": 1.8777870447595216e-06,
|
313 |
+
"loss": 0.0421,
|
314 |
+
"num_tokens": 13320876.0,
|
315 |
+
"reward": 3.456456989645958,
|
316 |
+
"reward_std": 0.8847015166282653,
|
317 |
+
"rewards/generate_all_rewards": 3.456456989645958,
|
318 |
+
"step": 1100
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"clip_ratio": 0.004837646484375,
|
322 |
+
"completion_length": 1024.0,
|
323 |
+
"epoch": 0.19182652210175147,
|
324 |
+
"grad_norm": 7.653139462749305,
|
325 |
+
"kl": 2.241796875,
|
326 |
+
"learning_rate": 1.8722268557130943e-06,
|
327 |
+
"loss": 0.0392,
|
328 |
+
"num_tokens": 13915940.0,
|
329 |
+
"reward": 2.1091002190113066,
|
330 |
+
"reward_std": 0.8859185457229615,
|
331 |
+
"rewards/generate_all_rewards": 2.1091002190113066,
|
332 |
+
"step": 1150
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"clip_ratio": 0.0070654296875,
|
336 |
+
"completion_length": 1024.0,
|
337 |
+
"epoch": 0.20016680567139283,
|
338 |
+
"grad_norm": 7.678037556240038,
|
339 |
+
"kl": 2.1728125,
|
340 |
+
"learning_rate": 1.8666666666666667e-06,
|
341 |
+
"loss": 0.0371,
|
342 |
+
"num_tokens": 14512636.0,
|
343 |
+
"reward": 1.9523184645175933,
|
344 |
+
"reward_std": 1.1099144089221955,
|
345 |
+
"rewards/generate_all_rewards": 1.9523184645175933,
|
346 |
+
"step": 1200
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"clip_ratio": 0.0082373046875,
|
350 |
+
"completion_length": 1024.0,
|
351 |
+
"epoch": 0.2085070892410342,
|
352 |
+
"grad_norm": 20.776332057103467,
|
353 |
+
"kl": 2.02796875,
|
354 |
+
"learning_rate": 1.861106477620239e-06,
|
355 |
+
"loss": 0.0341,
|
356 |
+
"num_tokens": 15119036.0,
|
357 |
+
"reward": 3.578354719877243,
|
358 |
+
"reward_std": 0.9086613065004349,
|
359 |
+
"rewards/generate_all_rewards": 3.578354719877243,
|
360 |
+
"step": 1250
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"clip_ratio": 0.00704345703125,
|
364 |
+
"completion_length": 1024.0,
|
365 |
+
"epoch": 0.21684737281067556,
|
366 |
+
"grad_norm": 2.912945916637192,
|
367 |
+
"kl": 2.1746875,
|
368 |
+
"learning_rate": 1.8555462885738113e-06,
|
369 |
+
"loss": 0.0361,
|
370 |
+
"num_tokens": 15734840.0,
|
371 |
+
"reward": 3.4535324451327325,
|
372 |
+
"reward_std": 1.1092214401811362,
|
373 |
+
"rewards/generate_all_rewards": 3.4535324451327325,
|
374 |
+
"step": 1300
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"clip_ratio": 0.005543212890625,
|
378 |
+
"completion_length": 1024.0,
|
379 |
+
"epoch": 0.22518765638031693,
|
380 |
+
"grad_norm": 4.363074357591489,
|
381 |
+
"kl": 1.61734375,
|
382 |
+
"learning_rate": 1.849986099527384e-06,
|
383 |
+
"loss": 0.0271,
|
384 |
+
"num_tokens": 16342192.0,
|
385 |
+
"reward": 3.3417653107643126,
|
386 |
+
"reward_std": 0.829094213321805,
|
387 |
+
"rewards/generate_all_rewards": 3.3417653107643126,
|
388 |
+
"step": 1350
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"clip_ratio": 0.007327880859375,
|
392 |
+
"completion_length": 1024.0,
|
393 |
+
"epoch": 0.2335279399499583,
|
394 |
+
"grad_norm": 51.189874692363496,
|
395 |
+
"kl": 3.0484375,
|
396 |
+
"learning_rate": 1.8444259104809564e-06,
|
397 |
+
"loss": 0.053,
|
398 |
+
"num_tokens": 16957324.0,
|
399 |
+
"reward": 3.9473286485671997,
|
400 |
+
"reward_std": 0.7120842409878969,
|
401 |
+
"rewards/generate_all_rewards": 3.9473286485671997,
|
402 |
+
"step": 1400
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"clip_ratio": 0.006270751953125,
|
406 |
+
"completion_length": 1024.0,
|
407 |
+
"epoch": 0.24186822351959966,
|
408 |
+
"grad_norm": 7.8429753301262695,
|
409 |
+
"kl": 2.339921875,
|
410 |
+
"learning_rate": 1.8388657214345287e-06,
|
411 |
+
"loss": 0.0396,
|
412 |
+
"num_tokens": 17558900.0,
|
413 |
+
"reward": 2.530026806592941,
|
414 |
+
"reward_std": 0.9393242979049683,
|
415 |
+
"rewards/generate_all_rewards": 2.530026806592941,
|
416 |
+
"step": 1450
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"clip_ratio": 0.0064697265625,
|
420 |
+
"completion_length": 1024.0,
|
421 |
+
"epoch": 0.25020850708924103,
|
422 |
+
"grad_norm": 5.769136809903878,
|
423 |
+
"kl": 2.0521875,
|
424 |
+
"learning_rate": 1.833305532388101e-06,
|
425 |
+
"loss": 0.0349,
|
426 |
+
"num_tokens": 18161068.0,
|
427 |
+
"reward": 3.6563946413993835,
|
428 |
+
"reward_std": 0.5981371226906776,
|
429 |
+
"rewards/generate_all_rewards": 3.6563946413993835,
|
430 |
+
"step": 1500
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"clip_ratio": 0.0059423828125,
|
434 |
+
"completion_length": 1024.0,
|
435 |
+
"epoch": 0.2585487906588824,
|
436 |
+
"grad_norm": 4.37800770904507,
|
437 |
+
"kl": 2.79046875,
|
438 |
+
"learning_rate": 1.8277453433416735e-06,
|
439 |
+
"loss": 0.0483,
|
440 |
+
"num_tokens": 18776456.0,
|
441 |
+
"reward": 2.3797482299804686,
|
442 |
+
"reward_std": 1.1877363938093186,
|
443 |
+
"rewards/generate_all_rewards": 2.3797482299804686,
|
444 |
+
"step": 1550
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"clip_ratio": 0.009705810546875,
|
448 |
+
"completion_length": 1024.0,
|
449 |
+
"epoch": 0.26688907422852376,
|
450 |
+
"grad_norm": 5.849705216576927,
|
451 |
+
"kl": 2.444140625,
|
452 |
+
"learning_rate": 1.822185154295246e-06,
|
453 |
+
"loss": 0.0422,
|
454 |
+
"num_tokens": 19375140.0,
|
455 |
+
"reward": 3.1630379295349123,
|
456 |
+
"reward_std": 0.7082004471123219,
|
457 |
+
"rewards/generate_all_rewards": 3.1630379295349123,
|
458 |
+
"step": 1600
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"clip_ratio": 0.006885986328125,
|
462 |
+
"completion_length": 1024.0,
|
463 |
+
"epoch": 0.27522935779816515,
|
464 |
+
"grad_norm": 11.341122516574023,
|
465 |
+
"kl": 1.932421875,
|
466 |
+
"learning_rate": 1.8166249652488184e-06,
|
467 |
+
"loss": 0.0311,
|
468 |
+
"num_tokens": 19975452.0,
|
469 |
+
"reward": 2.987669861316681,
|
470 |
+
"reward_std": 0.7325755050033331,
|
471 |
+
"rewards/generate_all_rewards": 2.987669861316681,
|
472 |
+
"step": 1650
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"clip_ratio": 0.0052978515625,
|
476 |
+
"completion_length": 1024.0,
|
477 |
+
"epoch": 0.2835696413678065,
|
478 |
+
"grad_norm": 16.88086046670062,
|
479 |
+
"kl": 2.680234375,
|
480 |
+
"learning_rate": 1.8110647762023907e-06,
|
481 |
+
"loss": 0.0472,
|
482 |
+
"num_tokens": 20587572.0,
|
483 |
+
"reward": 3.527438926696777,
|
484 |
+
"reward_std": 1.062203018963337,
|
485 |
+
"rewards/generate_all_rewards": 3.527438926696777,
|
486 |
+
"step": 1700
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"clip_ratio": 0.007686767578125,
|
490 |
+
"completion_length": 1024.0,
|
491 |
+
"epoch": 0.2919099249374479,
|
492 |
+
"grad_norm": 3.020717228432076,
|
493 |
+
"kl": 2.73734375,
|
494 |
+
"learning_rate": 1.8055045871559633e-06,
|
495 |
+
"loss": 0.0487,
|
496 |
+
"num_tokens": 21194080.0,
|
497 |
+
"reward": 3.477699854373932,
|
498 |
+
"reward_std": 0.9699093826115132,
|
499 |
+
"rewards/generate_all_rewards": 3.477699854373932,
|
500 |
+
"step": 1750
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"clip_ratio": 0.005350341796875,
|
504 |
+
"completion_length": 1024.0,
|
505 |
+
"epoch": 0.3002502085070892,
|
506 |
+
"grad_norm": 10.250138946853658,
|
507 |
+
"kl": 1.2153125,
|
508 |
+
"learning_rate": 1.7999443981095358e-06,
|
509 |
+
"loss": 0.0179,
|
510 |
+
"num_tokens": 21802912.0,
|
511 |
+
"reward": 4.211458885669709,
|
512 |
+
"reward_std": 0.5974260994791984,
|
513 |
+
"rewards/generate_all_rewards": 4.211458885669709,
|
514 |
+
"step": 1800
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"clip_ratio": 0.00499755859375,
|
518 |
+
"completion_length": 1024.0,
|
519 |
+
"epoch": 0.3085904920767306,
|
520 |
+
"grad_norm": 2.728898524811883,
|
521 |
+
"kl": 2.489296875,
|
522 |
+
"learning_rate": 1.7943842090631081e-06,
|
523 |
+
"loss": 0.0422,
|
524 |
+
"num_tokens": 22416820.0,
|
525 |
+
"reward": 3.9941040158271788,
|
526 |
+
"reward_std": 0.9688579052686691,
|
527 |
+
"rewards/generate_all_rewards": 3.9941040158271788,
|
528 |
+
"step": 1850
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"clip_ratio": 0.004656982421875,
|
532 |
+
"completion_length": 1024.0,
|
533 |
+
"epoch": 0.31693077564637195,
|
534 |
+
"grad_norm": 3.263929854853948,
|
535 |
+
"kl": 1.40859375,
|
536 |
+
"learning_rate": 1.7888240200166804e-06,
|
537 |
+
"loss": 0.0225,
|
538 |
+
"num_tokens": 23012076.0,
|
539 |
+
"reward": 3.5541777658462523,
|
540 |
+
"reward_std": 0.6293248501420021,
|
541 |
+
"rewards/generate_all_rewards": 3.5541777658462523,
|
542 |
+
"step": 1900
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"clip_ratio": 0.00759521484375,
|
546 |
+
"completion_length": 1024.0,
|
547 |
+
"epoch": 0.32527105921601335,
|
548 |
+
"grad_norm": 43.80415642034278,
|
549 |
+
"kl": 2.095546875,
|
550 |
+
"learning_rate": 1.783263830970253e-06,
|
551 |
+
"loss": 0.0352,
|
552 |
+
"num_tokens": 23611824.0,
|
553 |
+
"reward": 3.3262206852436065,
|
554 |
+
"reward_std": 0.669879068210721,
|
555 |
+
"rewards/generate_all_rewards": 3.3262206852436065,
|
556 |
+
"step": 1950
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"clip_ratio": 0.00798095703125,
|
560 |
+
"completion_length": 1024.0,
|
561 |
+
"epoch": 0.3336113427856547,
|
562 |
+
"grad_norm": 19.175386958975828,
|
563 |
+
"kl": 2.42546875,
|
564 |
+
"learning_rate": 1.7777036419238253e-06,
|
565 |
+
"loss": 0.0422,
|
566 |
+
"num_tokens": 24227908.0,
|
567 |
+
"reward": 3.655040820837021,
|
568 |
+
"reward_std": 0.8108076846599579,
|
569 |
+
"rewards/generate_all_rewards": 3.655040820837021,
|
570 |
+
"step": 2000
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"clip_ratio": 0.00546875,
|
574 |
+
"completion_length": 1024.0,
|
575 |
+
"epoch": 0.3419516263552961,
|
576 |
+
"grad_norm": 3.351550298003648,
|
577 |
+
"kl": 2.765546875,
|
578 |
+
"learning_rate": 1.7721434528773978e-06,
|
579 |
+
"loss": 0.0498,
|
580 |
+
"num_tokens": 24836204.0,
|
581 |
+
"reward": 3.816224058866501,
|
582 |
+
"reward_std": 0.7453654401004315,
|
583 |
+
"rewards/generate_all_rewards": 3.816224058866501,
|
584 |
+
"step": 2050
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"clip_ratio": 0.008900146484375,
|
588 |
+
"completion_length": 1024.0,
|
589 |
+
"epoch": 0.3502919099249375,
|
590 |
+
"grad_norm": 3.2293957852618385,
|
591 |
+
"kl": 2.447734375,
|
592 |
+
"learning_rate": 1.7665832638309701e-06,
|
593 |
+
"loss": 0.045,
|
594 |
+
"num_tokens": 25456812.0,
|
595 |
+
"reward": 4.989015902280808,
|
596 |
+
"reward_std": 0.7733614352345467,
|
597 |
+
"rewards/generate_all_rewards": 4.989015902280808,
|
598 |
+
"step": 2100
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"clip_ratio": 0.007430419921875,
|
602 |
+
"completion_length": 1024.0,
|
603 |
+
"epoch": 0.3586321934945788,
|
604 |
+
"grad_norm": 8.737056342531416,
|
605 |
+
"kl": 5.238203125,
|
606 |
+
"learning_rate": 1.7610230747845425e-06,
|
607 |
+
"loss": 0.1001,
|
608 |
+
"num_tokens": 26071304.0,
|
609 |
+
"reward": 2.9227333569526674,
|
610 |
+
"reward_std": 1.5148471367359162,
|
611 |
+
"rewards/generate_all_rewards": 2.9227333569526674,
|
612 |
+
"step": 2150
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"clip_ratio": 0.007855224609375,
|
616 |
+
"completion_length": 1024.0,
|
617 |
+
"epoch": 0.3669724770642202,
|
618 |
+
"grad_norm": 2719.9654735665067,
|
619 |
+
"kl": 2.415546875,
|
620 |
+
"learning_rate": 1.755462885738115e-06,
|
621 |
+
"loss": 0.0428,
|
622 |
+
"num_tokens": 26679488.0,
|
623 |
+
"reward": 3.643260437250137,
|
624 |
+
"reward_std": 0.8649014130234718,
|
625 |
+
"rewards/generate_all_rewards": 3.643260437250137,
|
626 |
+
"step": 2200
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"clip_ratio": 0.006314697265625,
|
630 |
+
"completion_length": 1024.0,
|
631 |
+
"epoch": 0.37531276063386154,
|
632 |
+
"grad_norm": 5.853101521377133,
|
633 |
+
"kl": 3.21375,
|
634 |
+
"learning_rate": 1.7499026966916875e-06,
|
635 |
+
"loss": 0.0575,
|
636 |
+
"num_tokens": 27294504.0,
|
637 |
+
"reward": 2.968059607744217,
|
638 |
+
"reward_std": 1.0330314177647233,
|
639 |
+
"rewards/generate_all_rewards": 2.968059607744217,
|
640 |
+
"step": 2250
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"clip_ratio": 0.005992431640625,
|
644 |
+
"completion_length": 1024.0,
|
645 |
+
"epoch": 0.38365304420350294,
|
646 |
+
"grad_norm": 8.224103504347667,
|
647 |
+
"kl": 5.151015625,
|
648 |
+
"learning_rate": 1.7443425076452599e-06,
|
649 |
+
"loss": 0.0975,
|
650 |
+
"num_tokens": 27914656.0,
|
651 |
+
"reward": 2.8436513328552246,
|
652 |
+
"reward_std": 2.013354176878929,
|
653 |
+
"rewards/generate_all_rewards": 2.8436513328552246,
|
654 |
+
"step": 2300
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"clip_ratio": 0.0057470703125,
|
658 |
+
"completion_length": 1024.0,
|
659 |
+
"epoch": 0.3919933277731443,
|
660 |
+
"grad_norm": 7.8051782744106415,
|
661 |
+
"kl": 4.03734375,
|
662 |
+
"learning_rate": 1.7387823185988322e-06,
|
663 |
+
"loss": 0.0742,
|
664 |
+
"num_tokens": 28516504.0,
|
665 |
+
"reward": 2.9896522617340087,
|
666 |
+
"reward_std": 1.8563957458920777,
|
667 |
+
"rewards/generate_all_rewards": 2.9896522617340087,
|
668 |
+
"step": 2350
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"clip_ratio": 0.004320068359375,
|
672 |
+
"completion_length": 1024.0,
|
673 |
+
"epoch": 0.40033361134278567,
|
674 |
+
"grad_norm": 3.3006539122678276,
|
675 |
+
"kl": 2.824375,
|
676 |
+
"learning_rate": 1.7332221295524047e-06,
|
677 |
+
"loss": 0.0525,
|
678 |
+
"num_tokens": 29117264.0,
|
679 |
+
"reward": 3.0978617167472837,
|
680 |
+
"reward_std": 1.175471960231662,
|
681 |
+
"rewards/generate_all_rewards": 3.0978617167472837,
|
682 |
+
"step": 2400
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"clip_ratio": 0.0046337890625,
|
686 |
+
"completion_length": 1024.0,
|
687 |
+
"epoch": 0.408673894912427,
|
688 |
+
"grad_norm": 12.460451063363156,
|
689 |
+
"kl": 2.73203125,
|
690 |
+
"learning_rate": 1.727661940505977e-06,
|
691 |
+
"loss": 0.0495,
|
692 |
+
"num_tokens": 29726312.0,
|
693 |
+
"reward": 3.126603194475174,
|
694 |
+
"reward_std": 1.1947118404507637,
|
695 |
+
"rewards/generate_all_rewards": 3.126603194475174,
|
696 |
+
"step": 2450
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"clip_ratio": 0.007073974609375,
|
700 |
+
"completion_length": 1024.0,
|
701 |
+
"epoch": 0.4170141784820684,
|
702 |
+
"grad_norm": 6.23861285525636,
|
703 |
+
"kl": 3.635703125,
|
704 |
+
"learning_rate": 1.7221017514595496e-06,
|
705 |
+
"loss": 0.0665,
|
706 |
+
"num_tokens": 30314692.0,
|
707 |
+
"reward": 2.6027573454380035,
|
708 |
+
"reward_std": 0.7329472535848618,
|
709 |
+
"rewards/generate_all_rewards": 2.6027573454380035,
|
710 |
+
"step": 2500
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"clip_ratio": 0.005120849609375,
|
714 |
+
"completion_length": 1024.0,
|
715 |
+
"epoch": 0.42535446205170974,
|
716 |
+
"grad_norm": 12.279697999562723,
|
717 |
+
"kl": 2.185078125,
|
718 |
+
"learning_rate": 1.7165415624131219e-06,
|
719 |
+
"loss": 0.0379,
|
720 |
+
"num_tokens": 30929740.0,
|
721 |
+
"reward": 4.00673865199089,
|
722 |
+
"reward_std": 0.6778046156093478,
|
723 |
+
"rewards/generate_all_rewards": 4.00673865199089,
|
724 |
+
"step": 2550
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"clip_ratio": 0.00871337890625,
|
728 |
+
"completion_length": 1024.0,
|
729 |
+
"epoch": 0.43369474562135113,
|
730 |
+
"grad_norm": 12.736320988063575,
|
731 |
+
"kl": 2.5959375,
|
732 |
+
"learning_rate": 1.7109813733666944e-06,
|
733 |
+
"loss": 0.0452,
|
734 |
+
"num_tokens": 31523968.0,
|
735 |
+
"reward": 3.6301355397701265,
|
736 |
+
"reward_std": 0.6656330497562886,
|
737 |
+
"rewards/generate_all_rewards": 3.6301355397701265,
|
738 |
+
"step": 2600
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"clip_ratio": 0.0074755859375,
|
742 |
+
"completion_length": 1024.0,
|
743 |
+
"epoch": 0.44203502919099247,
|
744 |
+
"grad_norm": 2.6222378119323952,
|
745 |
+
"kl": 3.994296875,
|
746 |
+
"learning_rate": 1.7054211843202667e-06,
|
747 |
+
"loss": 0.0724,
|
748 |
+
"num_tokens": 32128080.0,
|
749 |
+
"reward": 2.5648028159141543,
|
750 |
+
"reward_std": 1.231038143262267,
|
751 |
+
"rewards/generate_all_rewards": 2.5648028159141543,
|
752 |
+
"step": 2650
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"clip_ratio": 0.005047607421875,
|
756 |
+
"completion_length": 1024.0,
|
757 |
+
"epoch": 0.45037531276063386,
|
758 |
+
"grad_norm": 9.275686783269586,
|
759 |
+
"kl": 2.709140625,
|
760 |
+
"learning_rate": 1.6998609952738393e-06,
|
761 |
+
"loss": 0.0454,
|
762 |
+
"num_tokens": 32720372.0,
|
763 |
+
"reward": 3.4994620156288145,
|
764 |
+
"reward_std": 0.4822941809147596,
|
765 |
+
"rewards/generate_all_rewards": 3.4994620156288145,
|
766 |
+
"step": 2700
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"clip_ratio": 0.0049267578125,
|
770 |
+
"completion_length": 1024.0,
|
771 |
+
"epoch": 0.45871559633027525,
|
772 |
+
"grad_norm": 8.541221675792642,
|
773 |
+
"kl": 2.709296875,
|
774 |
+
"learning_rate": 1.6943008062274116e-06,
|
775 |
+
"loss": 0.0486,
|
776 |
+
"num_tokens": 33336552.0,
|
777 |
+
"reward": 3.0300825768709183,
|
778 |
+
"reward_std": 0.5665881184674799,
|
779 |
+
"rewards/generate_all_rewards": 3.0300825768709183,
|
780 |
+
"step": 2750
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"clip_ratio": 0.0037109375,
|
784 |
+
"completion_length": 1024.0,
|
785 |
+
"epoch": 0.4670558798999166,
|
786 |
+
"grad_norm": 5.125419890585354,
|
787 |
+
"kl": 1.825859375,
|
788 |
+
"learning_rate": 1.6887406171809841e-06,
|
789 |
+
"loss": 0.0302,
|
790 |
+
"num_tokens": 33945248.0,
|
791 |
+
"reward": 3.4999762004613877,
|
792 |
+
"reward_std": 0.5717377527058125,
|
793 |
+
"rewards/generate_all_rewards": 3.4999762004613877,
|
794 |
+
"step": 2800
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"clip_ratio": 0.0053125,
|
798 |
+
"completion_length": 1024.0,
|
799 |
+
"epoch": 0.475396163469558,
|
800 |
+
"grad_norm": 10.202348905573427,
|
801 |
+
"kl": 2.3403125,
|
802 |
+
"learning_rate": 1.6831804281345565e-06,
|
803 |
+
"loss": 0.0395,
|
804 |
+
"num_tokens": 34550132.0,
|
805 |
+
"reward": 2.1186443191766737,
|
806 |
+
"reward_std": 0.3818393291532993,
|
807 |
+
"rewards/generate_all_rewards": 2.1186443191766737,
|
808 |
+
"step": 2850
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"clip_ratio": 0.00617431640625,
|
812 |
+
"completion_length": 1024.0,
|
813 |
+
"epoch": 0.4837364470391993,
|
814 |
+
"grad_norm": 2.246128805290571,
|
815 |
+
"kl": 2.578515625,
|
816 |
+
"learning_rate": 1.677620239088129e-06,
|
817 |
+
"loss": 0.0449,
|
818 |
+
"num_tokens": 35151512.0,
|
819 |
+
"reward": 2.3393343752622604,
|
820 |
+
"reward_std": 0.6313513360917569,
|
821 |
+
"rewards/generate_all_rewards": 2.3393343752622604,
|
822 |
+
"step": 2900
|
823 |
+
},
|
824 |
+
{
|
825 |
+
"clip_ratio": 0.004263916015625,
|
826 |
+
"completion_length": 1024.0,
|
827 |
+
"epoch": 0.4920767306088407,
|
828 |
+
"grad_norm": 9.691052501917392,
|
829 |
+
"kl": 1.461484375,
|
830 |
+
"learning_rate": 1.6720600500417013e-06,
|
831 |
+
"loss": 0.0248,
|
832 |
+
"num_tokens": 35754108.0,
|
833 |
+
"reward": 3.9832346379756927,
|
834 |
+
"reward_std": 0.4096560184657574,
|
835 |
+
"rewards/generate_all_rewards": 3.9832346379756927,
|
836 |
+
"step": 2950
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"clip_ratio": 0.0049609375,
|
840 |
+
"completion_length": 1024.0,
|
841 |
+
"epoch": 0.5004170141784821,
|
842 |
+
"grad_norm": 2.452304665586332,
|
843 |
+
"kl": 2.235390625,
|
844 |
+
"learning_rate": 1.6664998609952738e-06,
|
845 |
+
"loss": 0.0385,
|
846 |
+
"num_tokens": 36368004.0,
|
847 |
+
"reward": 4.140755372047424,
|
848 |
+
"reward_std": 0.432945069745183,
|
849 |
+
"rewards/generate_all_rewards": 4.140755372047424,
|
850 |
+
"step": 3000
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"clip_ratio": 0.006944580078125,
|
854 |
+
"completion_length": 1024.0,
|
855 |
+
"epoch": 0.5087572977481234,
|
856 |
+
"grad_norm": 4.598716528073911,
|
857 |
+
"kl": 2.54578125,
|
858 |
+
"learning_rate": 1.6609396719488462e-06,
|
859 |
+
"loss": 0.0442,
|
860 |
+
"num_tokens": 36977484.0,
|
861 |
+
"reward": 3.9808691453933718,
|
862 |
+
"reward_std": 0.4201528353989124,
|
863 |
+
"rewards/generate_all_rewards": 3.9808691453933718,
|
864 |
+
"step": 3050
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"clip_ratio": 0.00439697265625,
|
868 |
+
"completion_length": 1024.0,
|
869 |
+
"epoch": 0.5170975813177648,
|
870 |
+
"grad_norm": 9.080608114471648,
|
871 |
+
"kl": 2.86203125,
|
872 |
+
"learning_rate": 1.6553794829024185e-06,
|
873 |
+
"loss": 0.0512,
|
874 |
+
"num_tokens": 37583980.0,
|
875 |
+
"reward": 2.9114849293231964,
|
876 |
+
"reward_std": 0.6796937258541584,
|
877 |
+
"rewards/generate_all_rewards": 2.9114849293231964,
|
878 |
+
"step": 3100
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"clip_ratio": 0.00376708984375,
|
882 |
+
"completion_length": 1024.0,
|
883 |
+
"epoch": 0.5254378648874062,
|
884 |
+
"grad_norm": 8.167703275815628,
|
885 |
+
"kl": 3.2890625,
|
886 |
+
"learning_rate": 1.649819293855991e-06,
|
887 |
+
"loss": 0.0587,
|
888 |
+
"num_tokens": 38185184.0,
|
889 |
+
"reward": 3.087721600532532,
|
890 |
+
"reward_std": 0.8554429135844112,
|
891 |
+
"rewards/generate_all_rewards": 3.087721600532532,
|
892 |
+
"step": 3150
|
893 |
+
},
|
894 |
+
{
|
895 |
+
"clip_ratio": 0.00428466796875,
|
896 |
+
"completion_length": 1024.0,
|
897 |
+
"epoch": 0.5337781484570475,
|
898 |
+
"grad_norm": 9.265129726935722,
|
899 |
+
"kl": 3.20609375,
|
900 |
+
"learning_rate": 1.6442591048095636e-06,
|
901 |
+
"loss": 0.0587,
|
902 |
+
"num_tokens": 38794784.0,
|
903 |
+
"reward": 3.553533103466034,
|
904 |
+
"reward_std": 0.7431424564123154,
|
905 |
+
"rewards/generate_all_rewards": 3.553533103466034,
|
906 |
+
"step": 3200
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"clip_ratio": 0.006676025390625,
|
910 |
+
"completion_length": 1024.0,
|
911 |
+
"epoch": 0.5421184320266889,
|
912 |
+
"grad_norm": 5.64854377106438,
|
913 |
+
"kl": 2.15875,
|
914 |
+
"learning_rate": 1.6386989157631359e-06,
|
915 |
+
"loss": 0.0361,
|
916 |
+
"num_tokens": 39402240.0,
|
917 |
+
"reward": 2.871965115070343,
|
918 |
+
"reward_std": 0.42509609084576366,
|
919 |
+
"rewards/generate_all_rewards": 2.871965115070343,
|
920 |
+
"step": 3250
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"clip_ratio": 0.002960205078125,
|
924 |
+
"completion_length": 1024.0,
|
925 |
+
"epoch": 0.5504587155963303,
|
926 |
+
"grad_norm": 4.95636107786261,
|
927 |
+
"kl": 2.88828125,
|
928 |
+
"learning_rate": 1.6331387267167082e-06,
|
929 |
+
"loss": 0.0513,
|
930 |
+
"num_tokens": 40009924.0,
|
931 |
+
"reward": 3.8079018712043764,
|
932 |
+
"reward_std": 0.7513183067925274,
|
933 |
+
"rewards/generate_all_rewards": 3.8079018712043764,
|
934 |
+
"step": 3300
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"clip_ratio": 0.004202880859375,
|
938 |
+
"completion_length": 1024.0,
|
939 |
+
"epoch": 0.5587989991659716,
|
940 |
+
"grad_norm": 6.97217793872751,
|
941 |
+
"kl": 3.969921875,
|
942 |
+
"learning_rate": 1.6275785376702807e-06,
|
943 |
+
"loss": 0.0709,
|
944 |
+
"num_tokens": 40625152.0,
|
945 |
+
"reward": 2.3424331378936767,
|
946 |
+
"reward_std": 1.1434777556359768,
|
947 |
+
"rewards/generate_all_rewards": 2.3424331378936767,
|
948 |
+
"step": 3350
|
949 |
+
},
|
950 |
+
{
|
951 |
+
"clip_ratio": 0.005111083984375,
|
952 |
+
"completion_length": 1024.0,
|
953 |
+
"epoch": 0.567139282735613,
|
954 |
+
"grad_norm": 15.565181340971451,
|
955 |
+
"kl": 3.036171875,
|
956 |
+
"learning_rate": 1.6220183486238533e-06,
|
957 |
+
"loss": 0.0562,
|
958 |
+
"num_tokens": 41229704.0,
|
959 |
+
"reward": 3.3502265119552614,
|
960 |
+
"reward_std": 1.13145647123456,
|
961 |
+
"rewards/generate_all_rewards": 3.3502265119552614,
|
962 |
+
"step": 3400
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"clip_ratio": 0.00511962890625,
|
966 |
+
"completion_length": 1024.0,
|
967 |
+
"epoch": 0.5754795663052544,
|
968 |
+
"grad_norm": 7.176359529921464,
|
969 |
+
"kl": 2.051875,
|
970 |
+
"learning_rate": 1.6164581595774256e-06,
|
971 |
+
"loss": 0.0347,
|
972 |
+
"num_tokens": 41825184.0,
|
973 |
+
"reward": 3.6443237620592117,
|
974 |
+
"reward_std": 0.7032080652937293,
|
975 |
+
"rewards/generate_all_rewards": 3.6443237620592117,
|
976 |
+
"step": 3450
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"clip_ratio": 0.011055908203125,
|
980 |
+
"completion_length": 1024.0,
|
981 |
+
"epoch": 0.5838198498748958,
|
982 |
+
"grad_norm": 4.526966823196885,
|
983 |
+
"kl": 2.79703125,
|
984 |
+
"learning_rate": 1.610897970530998e-06,
|
985 |
+
"loss": 0.0513,
|
986 |
+
"num_tokens": 42442268.0,
|
987 |
+
"reward": 4.048895968794823,
|
988 |
+
"reward_std": 0.958944509550929,
|
989 |
+
"rewards/generate_all_rewards": 4.048895968794823,
|
990 |
+
"step": 3500
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"clip_ratio": 0.00597412109375,
|
994 |
+
"completion_length": 1024.0,
|
995 |
+
"epoch": 0.5921601334445371,
|
996 |
+
"grad_norm": 16.586877688863396,
|
997 |
+
"kl": 2.502890625,
|
998 |
+
"learning_rate": 1.6053377814845702e-06,
|
999 |
+
"loss": 0.0449,
|
1000 |
+
"num_tokens": 43049748.0,
|
1001 |
+
"reward": 3.0637675487995146,
|
1002 |
+
"reward_std": 0.749227255731821,
|
1003 |
+
"rewards/generate_all_rewards": 3.0637675487995146,
|
1004 |
+
"step": 3550
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"clip_ratio": 0.004638671875,
|
1008 |
+
"completion_length": 1024.0,
|
1009 |
+
"epoch": 0.6005004170141784,
|
1010 |
+
"grad_norm": 10.447493313935354,
|
1011 |
+
"kl": 3.10890625,
|
1012 |
+
"learning_rate": 1.599777592438143e-06,
|
1013 |
+
"loss": 0.0547,
|
1014 |
+
"num_tokens": 43651800.0,
|
1015 |
+
"reward": 2.9153013825416565,
|
1016 |
+
"reward_std": 0.824127499461174,
|
1017 |
+
"rewards/generate_all_rewards": 2.9153013825416565,
|
1018 |
+
"step": 3600
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"clip_ratio": 0.005782470703125,
|
1022 |
+
"completion_length": 1024.0,
|
1023 |
+
"epoch": 0.6088407005838199,
|
1024 |
+
"grad_norm": 32.10338980603829,
|
1025 |
+
"kl": 2.6153125,
|
1026 |
+
"learning_rate": 1.5942174033917153e-06,
|
1027 |
+
"loss": 0.0471,
|
1028 |
+
"num_tokens": 44241760.0,
|
1029 |
+
"reward": 3.5675123274326324,
|
1030 |
+
"reward_std": 0.6166292682575295,
|
1031 |
+
"rewards/generate_all_rewards": 3.5675123274326324,
|
1032 |
+
"step": 3650
|
1033 |
+
},
|
1034 |
+
{
|
1035 |
+
"clip_ratio": 0.005928955078125,
|
1036 |
+
"completion_length": 1024.0,
|
1037 |
+
"epoch": 0.6171809841534612,
|
1038 |
+
"grad_norm": 6.685408071704869,
|
1039 |
+
"kl": 3.515390625,
|
1040 |
+
"learning_rate": 1.5886572143452876e-06,
|
1041 |
+
"loss": 0.0666,
|
1042 |
+
"num_tokens": 44852096.0,
|
1043 |
+
"reward": 3.9864674687385557,
|
1044 |
+
"reward_std": 0.8102425380796194,
|
1045 |
+
"rewards/generate_all_rewards": 3.9864674687385557,
|
1046 |
+
"step": 3700
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"clip_ratio": 0.00569580078125,
|
1050 |
+
"completion_length": 1024.0,
|
1051 |
+
"epoch": 0.6255212677231026,
|
1052 |
+
"grad_norm": 3.368030262404586,
|
1053 |
+
"kl": 2.3678125,
|
1054 |
+
"learning_rate": 1.58309702529886e-06,
|
1055 |
+
"loss": 0.0432,
|
1056 |
+
"num_tokens": 45460220.0,
|
1057 |
+
"reward": 3.25111713051796,
|
1058 |
+
"reward_std": 0.9311061368137598,
|
1059 |
+
"rewards/generate_all_rewards": 3.25111713051796,
|
1060 |
+
"step": 3750
|
1061 |
+
},
|
1062 |
+
{
|
1063 |
+
"clip_ratio": 0.006986083984375,
|
1064 |
+
"completion_length": 1024.0,
|
1065 |
+
"epoch": 0.6338615512927439,
|
1066 |
+
"grad_norm": 7.551706236295235,
|
1067 |
+
"kl": 2.4209375,
|
1068 |
+
"learning_rate": 1.5775368362524327e-06,
|
1069 |
+
"loss": 0.041,
|
1070 |
+
"num_tokens": 46072700.0,
|
1071 |
+
"reward": 2.695195918381214,
|
1072 |
+
"reward_std": 0.8751908247172833,
|
1073 |
+
"rewards/generate_all_rewards": 2.695195918381214,
|
1074 |
+
"step": 3800
|
1075 |
+
},
|
1076 |
+
{
|
1077 |
+
"clip_ratio": 0.003411865234375,
|
1078 |
+
"completion_length": 1024.0,
|
1079 |
+
"epoch": 0.6422018348623854,
|
1080 |
+
"grad_norm": 18.6347155666052,
|
1081 |
+
"kl": 3.246953125,
|
1082 |
+
"learning_rate": 1.571976647206005e-06,
|
1083 |
+
"loss": 0.0602,
|
1084 |
+
"num_tokens": 46667728.0,
|
1085 |
+
"reward": 2.4113513553142547,
|
1086 |
+
"reward_std": 1.3523825246095658,
|
1087 |
+
"rewards/generate_all_rewards": 2.4113513553142547,
|
1088 |
+
"step": 3850
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"clip_ratio": 0.004542236328125,
|
1092 |
+
"completion_length": 1024.0,
|
1093 |
+
"epoch": 0.6505421184320267,
|
1094 |
+
"grad_norm": 21.13739448151968,
|
1095 |
+
"kl": 2.31109375,
|
1096 |
+
"learning_rate": 1.5664164581595773e-06,
|
1097 |
+
"loss": 0.0404,
|
1098 |
+
"num_tokens": 47270204.0,
|
1099 |
+
"reward": 3.915536617040634,
|
1100 |
+
"reward_std": 0.6984670387580991,
|
1101 |
+
"rewards/generate_all_rewards": 3.915536617040634,
|
1102 |
+
"step": 3900
|
1103 |
+
},
|
1104 |
+
{
|
1105 |
+
"clip_ratio": 0.005711669921875,
|
1106 |
+
"completion_length": 1024.0,
|
1107 |
+
"epoch": 0.658882402001668,
|
1108 |
+
"grad_norm": 3.7694883514173156,
|
1109 |
+
"kl": 2.70125,
|
1110 |
+
"learning_rate": 1.5608562691131497e-06,
|
1111 |
+
"loss": 0.047,
|
1112 |
+
"num_tokens": 47877444.0,
|
1113 |
+
"reward": 4.0312881523370745,
|
1114 |
+
"reward_std": 0.6717341633141041,
|
1115 |
+
"rewards/generate_all_rewards": 4.0312881523370745,
|
1116 |
+
"step": 3950
|
1117 |
+
},
|
1118 |
+
{
|
1119 |
+
"clip_ratio": 0.002728271484375,
|
1120 |
+
"completion_length": 1024.0,
|
1121 |
+
"epoch": 0.6672226855713094,
|
1122 |
+
"grad_norm": 28.629124425382763,
|
1123 |
+
"kl": 4.227265625,
|
1124 |
+
"learning_rate": 1.5552960800667224e-06,
|
1125 |
+
"loss": 0.0783,
|
1126 |
+
"num_tokens": 48487624.0,
|
1127 |
+
"reward": 3.6814190673828127,
|
1128 |
+
"reward_std": 0.98351726539433,
|
1129 |
+
"rewards/generate_all_rewards": 3.6814190673828127,
|
1130 |
+
"step": 4000
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"clip_ratio": 0.003985595703125,
|
1134 |
+
"completion_length": 1024.0,
|
1135 |
+
"epoch": 0.6755629691409508,
|
1136 |
+
"grad_norm": 2.066191936598565,
|
1137 |
+
"kl": 2.4734375,
|
1138 |
+
"learning_rate": 1.5497358910202947e-06,
|
1139 |
+
"loss": 0.0416,
|
1140 |
+
"num_tokens": 49084624.0,
|
1141 |
+
"reward": 3.4913946342468263,
|
1142 |
+
"reward_std": 0.5357848100364209,
|
1143 |
+
"rewards/generate_all_rewards": 3.4913946342468263,
|
1144 |
+
"step": 4050
|
1145 |
+
},
|
1146 |
+
{
|
1147 |
+
"clip_ratio": 0.0029345703125,
|
1148 |
+
"completion_length": 1024.0,
|
1149 |
+
"epoch": 0.6839032527105922,
|
1150 |
+
"grad_norm": 2.29887054280825,
|
1151 |
+
"kl": 1.980625,
|
1152 |
+
"learning_rate": 1.544175701973867e-06,
|
1153 |
+
"loss": 0.0351,
|
1154 |
+
"num_tokens": 49697284.0,
|
1155 |
+
"reward": 3.8557702827453615,
|
1156 |
+
"reward_std": 0.6670322266966104,
|
1157 |
+
"rewards/generate_all_rewards": 3.8557702827453615,
|
1158 |
+
"step": 4100
|
1159 |
+
},
|
1160 |
+
{
|
1161 |
+
"clip_ratio": 0.0025244278740137816,
|
1162 |
+
"completion_length": 1023.4825,
|
1163 |
+
"epoch": 0.6922435362802335,
|
1164 |
+
"grad_norm": 2.273554199254762,
|
1165 |
+
"kl": 2.0675,
|
1166 |
+
"learning_rate": 1.5386155129274394e-06,
|
1167 |
+
"loss": 0.0349,
|
1168 |
+
"num_tokens": 50298965.0,
|
1169 |
+
"reward": 3.7827609944343568,
|
1170 |
+
"reward_std": 0.6611206940561533,
|
1171 |
+
"rewards/generate_all_rewards": 3.7827609944343568,
|
1172 |
+
"step": 4150
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"clip_ratio": 0.003787841796875,
|
1176 |
+
"completion_length": 1024.0,
|
1177 |
+
"epoch": 0.700583819849875,
|
1178 |
+
"grad_norm": 2.729061403557998,
|
1179 |
+
"kl": 2.938828125,
|
1180 |
+
"learning_rate": 1.5330553238810117e-06,
|
1181 |
+
"loss": 0.0527,
|
1182 |
+
"num_tokens": 50900509.0,
|
1183 |
+
"reward": 3.8453090608119966,
|
1184 |
+
"reward_std": 0.6590460070222616,
|
1185 |
+
"rewards/generate_all_rewards": 3.8453090608119966,
|
1186 |
+
"step": 4200
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"clip_ratio": 0.003973388671875,
|
1190 |
+
"completion_length": 1024.0,
|
1191 |
+
"epoch": 0.7089241034195163,
|
1192 |
+
"grad_norm": 2.6324042043612716,
|
1193 |
+
"kl": 2.7425,
|
1194 |
+
"learning_rate": 1.5274951348345844e-06,
|
1195 |
+
"loss": 0.0492,
|
1196 |
+
"num_tokens": 51503393.0,
|
1197 |
+
"reward": 3.854447617530823,
|
1198 |
+
"reward_std": 0.7062110313773156,
|
1199 |
+
"rewards/generate_all_rewards": 3.854447617530823,
|
1200 |
+
"step": 4250
|
1201 |
+
},
|
1202 |
+
{
|
1203 |
+
"clip_ratio": 0.005185546875,
|
1204 |
+
"completion_length": 1024.0,
|
1205 |
+
"epoch": 0.7172643869891576,
|
1206 |
+
"grad_norm": 10.054096567071998,
|
1207 |
+
"kl": 2.940234375,
|
1208 |
+
"learning_rate": 1.5219349457881568e-06,
|
1209 |
+
"loss": 0.0519,
|
1210 |
+
"num_tokens": 52114009.0,
|
1211 |
+
"reward": 3.3904974472522738,
|
1212 |
+
"reward_std": 0.5645231993496418,
|
1213 |
+
"rewards/generate_all_rewards": 3.3904974472522738,
|
1214 |
+
"step": 4300
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"clip_ratio": 0.0033544921875,
|
1218 |
+
"completion_length": 1024.0,
|
1219 |
+
"epoch": 0.725604670558799,
|
1220 |
+
"grad_norm": 2.216377326696927,
|
1221 |
+
"kl": 2.188515625,
|
1222 |
+
"learning_rate": 1.516374756741729e-06,
|
1223 |
+
"loss": 0.038,
|
1224 |
+
"num_tokens": 52716977.0,
|
1225 |
+
"reward": 3.649118809700012,
|
1226 |
+
"reward_std": 0.7559943076968193,
|
1227 |
+
"rewards/generate_all_rewards": 3.649118809700012,
|
1228 |
+
"step": 4350
|
1229 |
+
},
|
1230 |
+
{
|
1231 |
+
"clip_ratio": 0.008282470703125,
|
1232 |
+
"completion_length": 1024.0,
|
1233 |
+
"epoch": 0.7339449541284404,
|
1234 |
+
"grad_norm": 19.31919089805816,
|
1235 |
+
"kl": 3.878515625,
|
1236 |
+
"learning_rate": 1.5108145676953014e-06,
|
1237 |
+
"loss": 0.0728,
|
1238 |
+
"num_tokens": 53315957.0,
|
1239 |
+
"reward": 3.508232383728027,
|
1240 |
+
"reward_std": 0.46971126724034545,
|
1241 |
+
"rewards/generate_all_rewards": 3.508232383728027,
|
1242 |
+
"step": 4400
|
1243 |
+
},
|
1244 |
+
{
|
1245 |
+
"clip_ratio": 0.004521484375,
|
1246 |
+
"completion_length": 1024.0,
|
1247 |
+
"epoch": 0.7422852376980817,
|
1248 |
+
"grad_norm": 4.5243235708567155,
|
1249 |
+
"kl": 2.6675,
|
1250 |
+
"learning_rate": 1.5052543786488742e-06,
|
1251 |
+
"loss": 0.0474,
|
1252 |
+
"num_tokens": 53921229.0,
|
1253 |
+
"reward": 3.100267617702484,
|
1254 |
+
"reward_std": 0.3896624885499477,
|
1255 |
+
"rewards/generate_all_rewards": 3.100267617702484,
|
1256 |
+
"step": 4450
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"clip_ratio": 0.003692626953125,
|
1260 |
+
"completion_length": 1024.0,
|
1261 |
+
"epoch": 0.7506255212677231,
|
1262 |
+
"grad_norm": 2.355784905819362,
|
1263 |
+
"kl": 4.606171875,
|
1264 |
+
"learning_rate": 1.4996941896024465e-06,
|
1265 |
+
"loss": 0.0863,
|
1266 |
+
"num_tokens": 54520793.0,
|
1267 |
+
"reward": 2.8280148708820345,
|
1268 |
+
"reward_std": 1.2710373802483081,
|
1269 |
+
"rewards/generate_all_rewards": 2.8280148708820345,
|
1270 |
+
"step": 4500
|
1271 |
+
},
|
1272 |
+
{
|
1273 |
+
"clip_ratio": 0.002569580078125,
|
1274 |
+
"completion_length": 1024.0,
|
1275 |
+
"epoch": 0.7589658048373644,
|
1276 |
+
"grad_norm": 12.17255970472075,
|
1277 |
+
"kl": 72.12828125,
|
1278 |
+
"learning_rate": 1.4941340005560188e-06,
|
1279 |
+
"loss": 1.435,
|
1280 |
+
"num_tokens": 55124933.0,
|
1281 |
+
"reward": 3.7596522867679596,
|
1282 |
+
"reward_std": 0.4142132857814431,
|
1283 |
+
"rewards/generate_all_rewards": 3.7596522867679596,
|
1284 |
+
"step": 4550
|
1285 |
+
},
|
1286 |
+
{
|
1287 |
+
"clip_ratio": 0.002452392578125,
|
1288 |
+
"completion_length": 1024.0,
|
1289 |
+
"epoch": 0.7673060884070059,
|
1290 |
+
"grad_norm": 34.23055432567639,
|
1291 |
+
"kl": 1.603515625,
|
1292 |
+
"learning_rate": 1.4885738115095911e-06,
|
1293 |
+
"loss": 0.0263,
|
1294 |
+
"num_tokens": 55732813.0,
|
1295 |
+
"reward": 3.4148662626743316,
|
1296 |
+
"reward_std": 0.41280762093607337,
|
1297 |
+
"rewards/generate_all_rewards": 3.4148662626743316,
|
1298 |
+
"step": 4600
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"clip_ratio": 0.00472900390625,
|
1302 |
+
"completion_length": 1024.0,
|
1303 |
+
"epoch": 0.7756463719766472,
|
1304 |
+
"grad_norm": 7.328812046406036,
|
1305 |
+
"kl": 2.65265625,
|
1306 |
+
"learning_rate": 1.4830136224631637e-06,
|
1307 |
+
"loss": 0.0485,
|
1308 |
+
"num_tokens": 56338861.0,
|
1309 |
+
"reward": 4.01952663898468,
|
1310 |
+
"reward_std": 0.638951450586319,
|
1311 |
+
"rewards/generate_all_rewards": 4.01952663898468,
|
1312 |
+
"step": 4650
|
1313 |
+
},
|
1314 |
+
{
|
1315 |
+
"clip_ratio": 0.003695068359375,
|
1316 |
+
"completion_length": 1024.0,
|
1317 |
+
"epoch": 0.7839866555462885,
|
1318 |
+
"grad_norm": 11.307922352650342,
|
1319 |
+
"kl": 2.89109375,
|
1320 |
+
"learning_rate": 1.4774534334167362e-06,
|
1321 |
+
"loss": 0.0528,
|
1322 |
+
"num_tokens": 56942965.0,
|
1323 |
+
"reward": 3.3853393924236297,
|
1324 |
+
"reward_std": 0.7829919610917568,
|
1325 |
+
"rewards/generate_all_rewards": 3.3853393924236297,
|
1326 |
+
"step": 4700
|
1327 |
+
},
|
1328 |
+
{
|
1329 |
+
"clip_ratio": 0.003349609375,
|
1330 |
+
"completion_length": 1024.0,
|
1331 |
+
"epoch": 0.79232693911593,
|
1332 |
+
"grad_norm": 5.0280708015540645,
|
1333 |
+
"kl": 2.42765625,
|
1334 |
+
"learning_rate": 1.4718932443703085e-06,
|
1335 |
+
"loss": 0.043,
|
1336 |
+
"num_tokens": 57542753.0,
|
1337 |
+
"reward": 3.185204845368862,
|
1338 |
+
"reward_std": 0.6598466786742211,
|
1339 |
+
"rewards/generate_all_rewards": 3.185204845368862,
|
1340 |
+
"step": 4750
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"clip_ratio": 0.00411865234375,
|
1344 |
+
"completion_length": 1024.0,
|
1345 |
+
"epoch": 0.8006672226855713,
|
1346 |
+
"grad_norm": 3.835529281144975,
|
1347 |
+
"kl": 2.94375,
|
1348 |
+
"learning_rate": 1.4663330553238808e-06,
|
1349 |
+
"loss": 0.0548,
|
1350 |
+
"num_tokens": 58163693.0,
|
1351 |
+
"reward": 4.450564415454864,
|
1352 |
+
"reward_std": 1.0702211380563675,
|
1353 |
+
"rewards/generate_all_rewards": 4.450564415454864,
|
1354 |
+
"step": 4800
|
1355 |
+
},
|
1356 |
+
{
|
1357 |
+
"clip_ratio": 0.002451171875,
|
1358 |
+
"completion_length": 1024.0,
|
1359 |
+
"epoch": 0.8090075062552127,
|
1360 |
+
"grad_norm": 19.94946459088367,
|
1361 |
+
"kl": 2.078359375,
|
1362 |
+
"learning_rate": 1.4607728662774534e-06,
|
1363 |
+
"loss": 0.0365,
|
1364 |
+
"num_tokens": 58750017.0,
|
1365 |
+
"reward": 2.8765233075618744,
|
1366 |
+
"reward_std": 0.7672751601785421,
|
1367 |
+
"rewards/generate_all_rewards": 2.8765233075618744,
|
1368 |
+
"step": 4850
|
1369 |
+
},
|
1370 |
+
{
|
1371 |
+
"clip_ratio": 0.00357421875,
|
1372 |
+
"completion_length": 1024.0,
|
1373 |
+
"epoch": 0.817347789824854,
|
1374 |
+
"grad_norm": 17.047237053916263,
|
1375 |
+
"kl": 3.17078125,
|
1376 |
+
"learning_rate": 1.455212677231026e-06,
|
1377 |
+
"loss": 0.056,
|
1378 |
+
"num_tokens": 59348589.0,
|
1379 |
+
"reward": 4.052628271579742,
|
1380 |
+
"reward_std": 0.6698121561482548,
|
1381 |
+
"rewards/generate_all_rewards": 4.052628271579742,
|
1382 |
+
"step": 4900
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"clip_ratio": 0.004931640625,
|
1386 |
+
"completion_length": 1024.0,
|
1387 |
+
"epoch": 0.8256880733944955,
|
1388 |
+
"grad_norm": 4.826417211060371,
|
1389 |
+
"kl": 2.607734375,
|
1390 |
+
"learning_rate": 1.4496524881845982e-06,
|
1391 |
+
"loss": 0.0451,
|
1392 |
+
"num_tokens": 59954733.0,
|
1393 |
+
"reward": 2.8341499626636506,
|
1394 |
+
"reward_std": 0.46431461662054063,
|
1395 |
+
"rewards/generate_all_rewards": 2.8341499626636506,
|
1396 |
+
"step": 4950
|
1397 |
+
},
|
1398 |
+
{
|
1399 |
+
"clip_ratio": 0.005946044921875,
|
1400 |
+
"completion_length": 1024.0,
|
1401 |
+
"epoch": 0.8340283569641368,
|
1402 |
+
"grad_norm": 10.291202916786846,
|
1403 |
+
"kl": 3.267421875,
|
1404 |
+
"learning_rate": 1.4440922991381705e-06,
|
1405 |
+
"loss": 0.06,
|
1406 |
+
"num_tokens": 60574085.0,
|
1407 |
+
"reward": 3.4563196295499803,
|
1408 |
+
"reward_std": 0.794042921513319,
|
1409 |
+
"rewards/generate_all_rewards": 3.4563196295499803,
|
1410 |
+
"step": 5000
|
1411 |
+
},
|
1412 |
+
{
|
1413 |
+
"clip_ratio": 0.005137939453125,
|
1414 |
+
"completion_length": 1024.0,
|
1415 |
+
"epoch": 0.8423686405337781,
|
1416 |
+
"grad_norm": 31.864028882209055,
|
1417 |
+
"kl": 2.831640625,
|
1418 |
+
"learning_rate": 1.438532110091743e-06,
|
1419 |
+
"loss": 0.0516,
|
1420 |
+
"num_tokens": 61172865.0,
|
1421 |
+
"reward": 2.721455451250076,
|
1422 |
+
"reward_std": 0.5221429407224059,
|
1423 |
+
"rewards/generate_all_rewards": 2.721455451250076,
|
1424 |
+
"step": 5050
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"clip_ratio": 0.00337646484375,
|
1428 |
+
"completion_length": 1024.0,
|
1429 |
+
"epoch": 0.8507089241034195,
|
1430 |
+
"grad_norm": 14.39794633355936,
|
1431 |
+
"kl": 1.65421875,
|
1432 |
+
"learning_rate": 1.4329719210453156e-06,
|
1433 |
+
"loss": 0.028,
|
1434 |
+
"num_tokens": 61761873.0,
|
1435 |
+
"reward": 4.077827769517898,
|
1436 |
+
"reward_std": 0.6053008568286896,
|
1437 |
+
"rewards/generate_all_rewards": 4.077827769517898,
|
1438 |
+
"step": 5100
|
1439 |
+
},
|
1440 |
+
{
|
1441 |
+
"clip_ratio": 0.003028564453125,
|
1442 |
+
"completion_length": 1024.0,
|
1443 |
+
"epoch": 0.8590492076730609,
|
1444 |
+
"grad_norm": 6.864401695816703,
|
1445 |
+
"kl": 2.664453125,
|
1446 |
+
"learning_rate": 1.427411731998888e-06,
|
1447 |
+
"loss": 0.0474,
|
1448 |
+
"num_tokens": 62374005.0,
|
1449 |
+
"reward": 3.6210562777519226,
|
1450 |
+
"reward_std": 0.3803251222521067,
|
1451 |
+
"rewards/generate_all_rewards": 3.6210562777519226,
|
1452 |
+
"step": 5150
|
1453 |
+
},
|
1454 |
+
{
|
1455 |
+
"clip_ratio": 0.00245361328125,
|
1456 |
+
"completion_length": 1024.0,
|
1457 |
+
"epoch": 0.8673894912427023,
|
1458 |
+
"grad_norm": 3.555441991695044,
|
1459 |
+
"kl": 2.218125,
|
1460 |
+
"learning_rate": 1.4218515429524603e-06,
|
1461 |
+
"loss": 0.0374,
|
1462 |
+
"num_tokens": 62985201.0,
|
1463 |
+
"reward": 3.7183710026741026,
|
1464 |
+
"reward_std": 0.6048373529314994,
|
1465 |
+
"rewards/generate_all_rewards": 3.7183710026741026,
|
1466 |
+
"step": 5200
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"clip_ratio": 0.00371826171875,
|
1470 |
+
"completion_length": 1024.0,
|
1471 |
+
"epoch": 0.8757297748123436,
|
1472 |
+
"grad_norm": 6.813815164137024,
|
1473 |
+
"kl": 3.165859375,
|
1474 |
+
"learning_rate": 1.4162913539060328e-06,
|
1475 |
+
"loss": 0.0591,
|
1476 |
+
"num_tokens": 63587933.0,
|
1477 |
+
"reward": 3.470691123008728,
|
1478 |
+
"reward_std": 0.8655337832123041,
|
1479 |
+
"rewards/generate_all_rewards": 3.470691123008728,
|
1480 |
+
"step": 5250
|
1481 |
+
},
|
1482 |
+
{
|
1483 |
+
"clip_ratio": 0.00478271484375,
|
1484 |
+
"completion_length": 1024.0,
|
1485 |
+
"epoch": 0.8840700583819849,
|
1486 |
+
"grad_norm": 3.837611227178622,
|
1487 |
+
"kl": 2.496484375,
|
1488 |
+
"learning_rate": 1.4107311648596051e-06,
|
1489 |
+
"loss": 0.0445,
|
1490 |
+
"num_tokens": 64193125.0,
|
1491 |
+
"reward": 2.8873752689361574,
|
1492 |
+
"reward_std": 0.6322074158862233,
|
1493 |
+
"rewards/generate_all_rewards": 2.8873752689361574,
|
1494 |
+
"step": 5300
|
1495 |
+
},
|
1496 |
+
{
|
1497 |
+
"clip_ratio": 0.00561767578125,
|
1498 |
+
"completion_length": 1024.0,
|
1499 |
+
"epoch": 0.8924103419516264,
|
1500 |
+
"grad_norm": 10.223757483016007,
|
1501 |
+
"kl": 5.140546875,
|
1502 |
+
"learning_rate": 1.4051709758131776e-06,
|
1503 |
+
"loss": 0.0962,
|
1504 |
+
"num_tokens": 64791869.0,
|
1505 |
+
"reward": 2.5429132187366488,
|
1506 |
+
"reward_std": 0.906138878762722,
|
1507 |
+
"rewards/generate_all_rewards": 2.5429132187366488,
|
1508 |
+
"step": 5350
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"clip_ratio": 0.00482421875,
|
1512 |
+
"completion_length": 1024.0,
|
1513 |
+
"epoch": 0.9007506255212677,
|
1514 |
+
"grad_norm": 14.701033479824986,
|
1515 |
+
"kl": 4.24796875,
|
1516 |
+
"learning_rate": 1.39961078676675e-06,
|
1517 |
+
"loss": 0.0798,
|
1518 |
+
"num_tokens": 65400309.0,
|
1519 |
+
"reward": 2.5115936332941056,
|
1520 |
+
"reward_std": 0.8834956586360931,
|
1521 |
+
"rewards/generate_all_rewards": 2.5115936332941056,
|
1522 |
+
"step": 5400
|
1523 |
+
},
|
1524 |
+
{
|
1525 |
+
"clip_ratio": 0.00357421875,
|
1526 |
+
"completion_length": 1024.0,
|
1527 |
+
"epoch": 0.9090909090909091,
|
1528 |
+
"grad_norm": 9.892821812806087,
|
1529 |
+
"kl": 5.386484375,
|
1530 |
+
"learning_rate": 1.3940505977203225e-06,
|
1531 |
+
"loss": 0.1015,
|
1532 |
+
"num_tokens": 65993385.0,
|
1533 |
+
"reward": 1.6406327021121978,
|
1534 |
+
"reward_std": 1.3033610412478447,
|
1535 |
+
"rewards/generate_all_rewards": 1.6406327021121978,
|
1536 |
+
"step": 5450
|
1537 |
+
},
|
1538 |
+
{
|
1539 |
+
"clip_ratio": 0.003983154296875,
|
1540 |
+
"completion_length": 1024.0,
|
1541 |
+
"epoch": 0.9174311926605505,
|
1542 |
+
"grad_norm": 3.900132285131672,
|
1543 |
+
"kl": 2.206015625,
|
1544 |
+
"learning_rate": 1.3884904086738948e-06,
|
1545 |
+
"loss": 0.0387,
|
1546 |
+
"num_tokens": 66600541.0,
|
1547 |
+
"reward": 3.18016503572464,
|
1548 |
+
"reward_std": 0.8799462950974702,
|
1549 |
+
"rewards/generate_all_rewards": 3.18016503572464,
|
1550 |
+
"step": 5500
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"clip_ratio": 0.00421142578125,
|
1554 |
+
"completion_length": 1024.0,
|
1555 |
+
"epoch": 0.9257714762301918,
|
1556 |
+
"grad_norm": 2.87190664608335,
|
1557 |
+
"kl": 2.29390625,
|
1558 |
+
"learning_rate": 1.3829302196274674e-06,
|
1559 |
+
"loss": 0.0432,
|
1560 |
+
"num_tokens": 67211765.0,
|
1561 |
+
"reward": 3.1571250998973848,
|
1562 |
+
"reward_std": 0.6987396457791328,
|
1563 |
+
"rewards/generate_all_rewards": 3.1571250998973848,
|
1564 |
+
"step": 5550
|
1565 |
+
},
|
1566 |
+
{
|
1567 |
+
"clip_ratio": 0.00346923828125,
|
1568 |
+
"completion_length": 1024.0,
|
1569 |
+
"epoch": 0.9341117597998332,
|
1570 |
+
"grad_norm": 4.817047536540244,
|
1571 |
+
"kl": 2.0128125,
|
1572 |
+
"learning_rate": 1.3773700305810397e-06,
|
1573 |
+
"loss": 0.0367,
|
1574 |
+
"num_tokens": 67836585.0,
|
1575 |
+
"reward": 4.290312564373016,
|
1576 |
+
"reward_std": 0.7204281195998192,
|
1577 |
+
"rewards/generate_all_rewards": 4.290312564373016,
|
1578 |
+
"step": 5600
|
1579 |
+
},
|
1580 |
+
{
|
1581 |
+
"clip_ratio": 0.00431640625,
|
1582 |
+
"completion_length": 1024.0,
|
1583 |
+
"epoch": 0.9424520433694745,
|
1584 |
+
"grad_norm": 14.566705655714621,
|
1585 |
+
"kl": 2.095234375,
|
1586 |
+
"learning_rate": 1.3718098415346122e-06,
|
1587 |
+
"loss": 0.0362,
|
1588 |
+
"num_tokens": 68447877.0,
|
1589 |
+
"reward": 4.023037674427033,
|
1590 |
+
"reward_std": 0.45142842307686804,
|
1591 |
+
"rewards/generate_all_rewards": 4.023037674427033,
|
1592 |
+
"step": 5650
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"clip_ratio": 0.006263427734375,
|
1596 |
+
"completion_length": 1024.0,
|
1597 |
+
"epoch": 0.950792326939116,
|
1598 |
+
"grad_norm": 7.824949124358837,
|
1599 |
+
"kl": 3.860703125,
|
1600 |
+
"learning_rate": 1.3662496524881845e-06,
|
1601 |
+
"loss": 0.0707,
|
1602 |
+
"num_tokens": 69049573.0,
|
1603 |
+
"reward": 3.0012189817428587,
|
1604 |
+
"reward_std": 0.3978773768246174,
|
1605 |
+
"rewards/generate_all_rewards": 3.0012189817428587,
|
1606 |
+
"step": 5700
|
1607 |
+
},
|
1608 |
+
{
|
1609 |
+
"clip_ratio": 0.002972412109375,
|
1610 |
+
"completion_length": 1024.0,
|
1611 |
+
"epoch": 0.9591326105087573,
|
1612 |
+
"grad_norm": 3.1286184419710303,
|
1613 |
+
"kl": 3.4021875,
|
1614 |
+
"learning_rate": 1.3606894634417569e-06,
|
1615 |
+
"loss": 0.0635,
|
1616 |
+
"num_tokens": 69639193.0,
|
1617 |
+
"reward": 3.187228103876114,
|
1618 |
+
"reward_std": 0.8414063957333565,
|
1619 |
+
"rewards/generate_all_rewards": 3.187228103876114,
|
1620 |
+
"step": 5750
|
1621 |
+
},
|
1622 |
+
{
|
1623 |
+
"clip_ratio": 0.004266357421875,
|
1624 |
+
"completion_length": 1024.0,
|
1625 |
+
"epoch": 0.9674728940783986,
|
1626 |
+
"grad_norm": 19.314033277311875,
|
1627 |
+
"kl": 2.820625,
|
1628 |
+
"learning_rate": 1.3551292743953294e-06,
|
1629 |
+
"loss": 0.0517,
|
1630 |
+
"num_tokens": 70247585.0,
|
1631 |
+
"reward": 3.7847342348098754,
|
1632 |
+
"reward_std": 0.6664008083939552,
|
1633 |
+
"rewards/generate_all_rewards": 3.7847342348098754,
|
1634 |
+
"step": 5800
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"clip_ratio": 0.00450439453125,
|
1638 |
+
"completion_length": 1024.0,
|
1639 |
+
"epoch": 0.97581317764804,
|
1640 |
+
"grad_norm": 7.481107247218354,
|
1641 |
+
"kl": 2.52328125,
|
1642 |
+
"learning_rate": 1.349569085348902e-06,
|
1643 |
+
"loss": 0.0467,
|
1644 |
+
"num_tokens": 70850869.0,
|
1645 |
+
"reward": 3.71783961057663,
|
1646 |
+
"reward_std": 0.6372227993607521,
|
1647 |
+
"rewards/generate_all_rewards": 3.71783961057663,
|
1648 |
+
"step": 5850
|
1649 |
+
},
|
1650 |
+
{
|
1651 |
+
"clip_ratio": 0.003583984375,
|
1652 |
+
"completion_length": 1024.0,
|
1653 |
+
"epoch": 0.9841534612176814,
|
1654 |
+
"grad_norm": 13.485541281738868,
|
1655 |
+
"kl": 2.18,
|
1656 |
+
"learning_rate": 1.3440088963024742e-06,
|
1657 |
+
"loss": 0.0388,
|
1658 |
+
"num_tokens": 71456689.0,
|
1659 |
+
"reward": 3.874968693852425,
|
1660 |
+
"reward_std": 0.7574485129117966,
|
1661 |
+
"rewards/generate_all_rewards": 3.874968693852425,
|
1662 |
+
"step": 5900
|
1663 |
+
},
|
1664 |
+
{
|
1665 |
+
"clip_ratio": 0.003751220703125,
|
1666 |
+
"completion_length": 1024.0,
|
1667 |
+
"epoch": 0.9924937447873228,
|
1668 |
+
"grad_norm": 4.232392646106402,
|
1669 |
+
"kl": 2.265625,
|
1670 |
+
"learning_rate": 1.3384487072560466e-06,
|
1671 |
+
"loss": 0.0411,
|
1672 |
+
"num_tokens": 72057601.0,
|
1673 |
+
"reward": 3.2541480442881583,
|
1674 |
+
"reward_std": 0.5004438938200474,
|
1675 |
+
"rewards/generate_all_rewards": 3.2541480442881583,
|
1676 |
+
"step": 5950
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"clip_ratio": 0.004661865234375,
|
1680 |
+
"completion_length": 1024.0,
|
1681 |
+
"epoch": 1.001000834028357,
|
1682 |
+
"grad_norm": 4.190575159866155,
|
1683 |
+
"kl": 2.268203125,
|
1684 |
+
"learning_rate": 1.332888518209619e-06,
|
1685 |
+
"loss": 0.041,
|
1686 |
+
"num_tokens": 72657241.0,
|
1687 |
+
"reward": 4.536292546391487,
|
1688 |
+
"reward_std": 0.7764492811262608,
|
1689 |
+
"rewards/generate_all_rewards": 4.536292546391487,
|
1690 |
+
"step": 6000
|
1691 |
+
},
|
1692 |
+
{
|
1693 |
+
"clip_ratio": 0.003243408203125,
|
1694 |
+
"completion_length": 1024.0,
|
1695 |
+
"epoch": 1.0093411175979983,
|
1696 |
+
"grad_norm": 2.73669917409696,
|
1697 |
+
"kl": 2.99953125,
|
1698 |
+
"learning_rate": 1.3273283291631916e-06,
|
1699 |
+
"loss": 0.0554,
|
1700 |
+
"num_tokens": 73258405.0,
|
1701 |
+
"reward": 3.7951004153490064,
|
1702 |
+
"reward_std": 0.5186809635162354,
|
1703 |
+
"rewards/generate_all_rewards": 3.7951004153490064,
|
1704 |
+
"step": 6050
|
1705 |
+
},
|
1706 |
+
{
|
1707 |
+
"clip_ratio": 0.004434814453125,
|
1708 |
+
"completion_length": 1024.0,
|
1709 |
+
"epoch": 1.0176814011676396,
|
1710 |
+
"grad_norm": 3.2206800159419102,
|
1711 |
+
"kl": 3.396875,
|
1712 |
+
"learning_rate": 1.321768140116764e-06,
|
1713 |
+
"loss": 0.0631,
|
1714 |
+
"num_tokens": 73852137.0,
|
1715 |
+
"reward": 2.9864656680822375,
|
1716 |
+
"reward_std": 0.6515207149833441,
|
1717 |
+
"rewards/generate_all_rewards": 2.9864656680822375,
|
1718 |
+
"step": 6100
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"clip_ratio": 0.0039599609375,
|
1722 |
+
"completion_length": 1024.0,
|
1723 |
+
"epoch": 1.0260216847372812,
|
1724 |
+
"grad_norm": 5.2073505200985615,
|
1725 |
+
"kl": 3.2271875,
|
1726 |
+
"learning_rate": 1.3162079510703363e-06,
|
1727 |
+
"loss": 0.0602,
|
1728 |
+
"num_tokens": 74469161.0,
|
1729 |
+
"reward": 3.73267055273056,
|
1730 |
+
"reward_std": 0.5677018699049949,
|
1731 |
+
"rewards/generate_all_rewards": 3.73267055273056,
|
1732 |
+
"step": 6150
|
1733 |
+
},
|
1734 |
+
{
|
1735 |
+
"clip_ratio": 0.002672119140625,
|
1736 |
+
"completion_length": 1024.0,
|
1737 |
+
"epoch": 1.0343619683069225,
|
1738 |
+
"grad_norm": 5.539030446663812,
|
1739 |
+
"kl": 3.00671875,
|
1740 |
+
"learning_rate": 1.3106477620239086e-06,
|
1741 |
+
"loss": 0.0557,
|
1742 |
+
"num_tokens": 75077049.0,
|
1743 |
+
"reward": 3.6774249446392058,
|
1744 |
+
"reward_std": 0.8043338760733605,
|
1745 |
+
"rewards/generate_all_rewards": 3.6774249446392058,
|
1746 |
+
"step": 6200
|
1747 |
+
},
|
1748 |
+
{
|
1749 |
+
"clip_ratio": 0.004927978515625,
|
1750 |
+
"completion_length": 1024.0,
|
1751 |
+
"epoch": 1.0427022518765638,
|
1752 |
+
"grad_norm": 2.7534484045841787,
|
1753 |
+
"kl": 3.223828125,
|
1754 |
+
"learning_rate": 1.3050875729774811e-06,
|
1755 |
+
"loss": 0.0604,
|
1756 |
+
"num_tokens": 75687349.0,
|
1757 |
+
"reward": 3.7158334070444106,
|
1758 |
+
"reward_std": 0.658657222688198,
|
1759 |
+
"rewards/generate_all_rewards": 3.7158334070444106,
|
1760 |
+
"step": 6250
|
1761 |
+
},
|
1762 |
+
{
|
1763 |
+
"clip_ratio": 0.005045166015625,
|
1764 |
+
"completion_length": 1024.0,
|
1765 |
+
"epoch": 1.0510425354462052,
|
1766 |
+
"grad_norm": 4.953550380847901,
|
1767 |
+
"kl": 2.543203125,
|
1768 |
+
"learning_rate": 1.2995273839310537e-06,
|
1769 |
+
"loss": 0.0472,
|
1770 |
+
"num_tokens": 76300569.0,
|
1771 |
+
"reward": 4.2147672295570375,
|
1772 |
+
"reward_std": 0.8778787985444069,
|
1773 |
+
"rewards/generate_all_rewards": 4.2147672295570375,
|
1774 |
+
"step": 6300
|
1775 |
+
},
|
1776 |
+
{
|
1777 |
+
"clip_ratio": 0.003118896484375,
|
1778 |
+
"completion_length": 1024.0,
|
1779 |
+
"epoch": 1.0593828190158465,
|
1780 |
+
"grad_norm": 12.367784692060768,
|
1781 |
+
"kl": 2.41859375,
|
1782 |
+
"learning_rate": 1.293967194884626e-06,
|
1783 |
+
"loss": 0.043,
|
1784 |
+
"num_tokens": 76904045.0,
|
1785 |
+
"reward": 3.5026879012584686,
|
1786 |
+
"reward_std": 0.6680633321404457,
|
1787 |
+
"rewards/generate_all_rewards": 3.5026879012584686,
|
1788 |
+
"step": 6350
|
1789 |
+
},
|
1790 |
+
{
|
1791 |
+
"clip_ratio": 0.00299072265625,
|
1792 |
+
"completion_length": 1024.0,
|
1793 |
+
"epoch": 1.0677231025854879,
|
1794 |
+
"grad_norm": 58.121185792290575,
|
1795 |
+
"kl": 2.092421875,
|
1796 |
+
"learning_rate": 1.2884070058381983e-06,
|
1797 |
+
"loss": 0.0389,
|
1798 |
+
"num_tokens": 77527197.0,
|
1799 |
+
"reward": 4.4785698533058165,
|
1800 |
+
"reward_std": 0.33464464247226716,
|
1801 |
+
"rewards/generate_all_rewards": 4.4785698533058165,
|
1802 |
+
"step": 6400
|
1803 |
+
},
|
1804 |
+
{
|
1805 |
+
"clip_ratio": 0.005118408203125,
|
1806 |
+
"completion_length": 1024.0,
|
1807 |
+
"epoch": 1.0760633861551292,
|
1808 |
+
"grad_norm": 24.287293596006418,
|
1809 |
+
"kl": 3.210234375,
|
1810 |
+
"learning_rate": 1.2828468167917708e-06,
|
1811 |
+
"loss": 0.0578,
|
1812 |
+
"num_tokens": 78134137.0,
|
1813 |
+
"reward": 3.7603088819980623,
|
1814 |
+
"reward_std": 0.4170807982981205,
|
1815 |
+
"rewards/generate_all_rewards": 3.7603088819980623,
|
1816 |
+
"step": 6450
|
1817 |
+
},
|
1818 |
+
{
|
1819 |
+
"clip_ratio": 0.003282470703125,
|
1820 |
+
"completion_length": 1024.0,
|
1821 |
+
"epoch": 1.0844036697247708,
|
1822 |
+
"grad_norm": 15.397400516678681,
|
1823 |
+
"kl": 2.402890625,
|
1824 |
+
"learning_rate": 1.2772866277453434e-06,
|
1825 |
+
"loss": 0.0428,
|
1826 |
+
"num_tokens": 78750593.0,
|
1827 |
+
"reward": 4.395290724039078,
|
1828 |
+
"reward_std": 0.5200403224676847,
|
1829 |
+
"rewards/generate_all_rewards": 4.395290724039078,
|
1830 |
+
"step": 6500
|
1831 |
+
},
|
1832 |
+
{
|
1833 |
+
"clip_ratio": 0.0048388671875,
|
1834 |
+
"completion_length": 1024.0,
|
1835 |
+
"epoch": 1.092743953294412,
|
1836 |
+
"grad_norm": 4.963221819052845,
|
1837 |
+
"kl": 5.079765625,
|
1838 |
+
"learning_rate": 1.2717264386989157e-06,
|
1839 |
+
"loss": 0.0951,
|
1840 |
+
"num_tokens": 79360801.0,
|
1841 |
+
"reward": 3.146202702522278,
|
1842 |
+
"reward_std": 0.6797874164581299,
|
1843 |
+
"rewards/generate_all_rewards": 3.146202702522278,
|
1844 |
+
"step": 6550
|
1845 |
+
},
|
1846 |
+
{
|
1847 |
+
"clip_ratio": 0.003487548828125,
|
1848 |
+
"completion_length": 1024.0,
|
1849 |
+
"epoch": 1.1010842368640534,
|
1850 |
+
"grad_norm": 15.023192969035028,
|
1851 |
+
"kl": 3.15125,
|
1852 |
+
"learning_rate": 1.266166249652488e-06,
|
1853 |
+
"loss": 0.0587,
|
1854 |
+
"num_tokens": 79952117.0,
|
1855 |
+
"reward": 3.741974139213562,
|
1856 |
+
"reward_std": 0.4647814616560936,
|
1857 |
+
"rewards/generate_all_rewards": 3.741974139213562,
|
1858 |
+
"step": 6600
|
1859 |
+
},
|
1860 |
+
{
|
1861 |
+
"clip_ratio": 0.004453125,
|
1862 |
+
"completion_length": 1024.0,
|
1863 |
+
"epoch": 1.1094245204336948,
|
1864 |
+
"grad_norm": 9.103985085349178,
|
1865 |
+
"kl": 2.305625,
|
1866 |
+
"learning_rate": 1.2606060606060606e-06,
|
1867 |
+
"loss": 0.0413,
|
1868 |
+
"num_tokens": 80552069.0,
|
1869 |
+
"reward": 4.223839626312256,
|
1870 |
+
"reward_std": 0.5068751226365567,
|
1871 |
+
"rewards/generate_all_rewards": 4.223839626312256,
|
1872 |
+
"step": 6650
|
1873 |
+
},
|
1874 |
+
{
|
1875 |
+
"clip_ratio": 0.003953857421875,
|
1876 |
+
"completion_length": 1024.0,
|
1877 |
+
"epoch": 1.117764804003336,
|
1878 |
+
"grad_norm": 3.2493747477518973,
|
1879 |
+
"kl": 2.931640625,
|
1880 |
+
"learning_rate": 1.255045871559633e-06,
|
1881 |
+
"loss": 0.0535,
|
1882 |
+
"num_tokens": 81155465.0,
|
1883 |
+
"reward": 3.6686401844024656,
|
1884 |
+
"reward_std": 0.7149755907058716,
|
1885 |
+
"rewards/generate_all_rewards": 3.6686401844024656,
|
1886 |
+
"step": 6700
|
1887 |
+
},
|
1888 |
+
{
|
1889 |
+
"clip_ratio": 0.00394287109375,
|
1890 |
+
"completion_length": 1024.0,
|
1891 |
+
"epoch": 1.1261050875729774,
|
1892 |
+
"grad_norm": 3.186846652783417,
|
1893 |
+
"kl": 3.184296875,
|
1894 |
+
"learning_rate": 1.2494856825132054e-06,
|
1895 |
+
"loss": 0.0584,
|
1896 |
+
"num_tokens": 81751105.0,
|
1897 |
+
"reward": 4.3162576973438265,
|
1898 |
+
"reward_std": 0.45037852857261895,
|
1899 |
+
"rewards/generate_all_rewards": 4.3162576973438265,
|
1900 |
+
"step": 6750
|
1901 |
+
},
|
1902 |
+
{
|
1903 |
+
"clip_ratio": 0.003707275390625,
|
1904 |
+
"completion_length": 1024.0,
|
1905 |
+
"epoch": 1.1344453711426188,
|
1906 |
+
"grad_norm": 3.04261280846647,
|
1907 |
+
"kl": 2.888828125,
|
1908 |
+
"learning_rate": 1.2439254934667777e-06,
|
1909 |
+
"loss": 0.0521,
|
1910 |
+
"num_tokens": 82351093.0,
|
1911 |
+
"reward": 3.8912365996837615,
|
1912 |
+
"reward_std": 0.35723258018493653,
|
1913 |
+
"rewards/generate_all_rewards": 3.8912365996837615,
|
1914 |
+
"step": 6800
|
1915 |
+
},
|
1916 |
+
{
|
1917 |
+
"clip_ratio": 0.00365478515625,
|
1918 |
+
"completion_length": 1024.0,
|
1919 |
+
"epoch": 1.1427856547122601,
|
1920 |
+
"grad_norm": 4.310881136848889,
|
1921 |
+
"kl": 2.07828125,
|
1922 |
+
"learning_rate": 1.23836530442035e-06,
|
1923 |
+
"loss": 0.0358,
|
1924 |
+
"num_tokens": 82958733.0,
|
1925 |
+
"reward": 4.600189430117607,
|
1926 |
+
"reward_std": 0.4825837394595146,
|
1927 |
+
"rewards/generate_all_rewards": 4.600189430117607,
|
1928 |
+
"step": 6850
|
1929 |
+
},
|
1930 |
+
{
|
1931 |
+
"clip_ratio": 0.005318603515625,
|
1932 |
+
"completion_length": 1024.0,
|
1933 |
+
"epoch": 1.1511259382819015,
|
1934 |
+
"grad_norm": 5.6721210845224075,
|
1935 |
+
"kl": 3.6896875,
|
1936 |
+
"learning_rate": 1.2328051153739228e-06,
|
1937 |
+
"loss": 0.067,
|
1938 |
+
"num_tokens": 83556809.0,
|
1939 |
+
"reward": 3.0905766177177427,
|
1940 |
+
"reward_std": 0.7636496469378471,
|
1941 |
+
"rewards/generate_all_rewards": 3.0905766177177427,
|
1942 |
+
"step": 6900
|
1943 |
+
},
|
1944 |
+
{
|
1945 |
+
"clip_ratio": 0.003841552734375,
|
1946 |
+
"completion_length": 1024.0,
|
1947 |
+
"epoch": 1.159466221851543,
|
1948 |
+
"grad_norm": 35.64711800695698,
|
1949 |
+
"kl": 2.9359375,
|
1950 |
+
"learning_rate": 1.2272449263274951e-06,
|
1951 |
+
"loss": 0.0535,
|
1952 |
+
"num_tokens": 84165225.0,
|
1953 |
+
"reward": 3.255465921163559,
|
1954 |
+
"reward_std": 1.003816493228078,
|
1955 |
+
"rewards/generate_all_rewards": 3.255465921163559,
|
1956 |
+
"step": 6950
|
1957 |
+
},
|
1958 |
+
{
|
1959 |
+
"clip_ratio": 0.00360595703125,
|
1960 |
+
"completion_length": 1024.0,
|
1961 |
+
"epoch": 1.1678065054211844,
|
1962 |
+
"grad_norm": 5.510807439460425,
|
1963 |
+
"kl": 2.919296875,
|
1964 |
+
"learning_rate": 1.2216847372810674e-06,
|
1965 |
+
"loss": 0.0537,
|
1966 |
+
"num_tokens": 84781149.0,
|
1967 |
+
"reward": 3.9430871558189393,
|
1968 |
+
"reward_std": 0.46672826692461966,
|
1969 |
+
"rewards/generate_all_rewards": 3.9430871558189393,
|
1970 |
+
"step": 7000
|
1971 |
+
}
|
1972 |
+
],
|
1973 |
+
"logging_steps": 50,
|
1974 |
+
"max_steps": 17985,
|
1975 |
+
"num_input_tokens_seen": 0,
|
1976 |
+
"num_train_epochs": 3,
|
1977 |
+
"save_steps": 1000,
|
1978 |
+
"stateful_callbacks": {
|
1979 |
+
"TrainerControl": {
|
1980 |
+
"args": {
|
1981 |
+
"should_epoch_stop": false,
|
1982 |
+
"should_evaluate": false,
|
1983 |
+
"should_log": false,
|
1984 |
+
"should_save": true,
|
1985 |
+
"should_training_stop": false
|
1986 |
+
},
|
1987 |
+
"attributes": {}
|
1988 |
+
}
|
1989 |
+
},
|
1990 |
+
"total_flos": 0.0,
|
1991 |
+
"train_batch_size": 4,
|
1992 |
+
"trial_name": null,
|
1993 |
+
"trial_params": null
|
1994 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ced00c0dc42390164944b48c1567a5cf07bbb0603e64c349f2106e674c6d7365
|
3 |
+
size 7825
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|