--- license: mit datasets: - Abhishekcr448/Hinglish-Everyday-Conversations-1M language: - hi - en base_model: - google/gemma-3-1b-it pipeline_tag: text-generation tags: - hinglish library_name: keras-hub --- # RLM_hingu

Buy Me A Coffee

**RLM_hingu** is a fine-tuned version of the [Gemma-3B Instruct](https://huggingface.co/google/gemma-1.1-1b-it) model, adapted for casual Hinglish (Hindi-English) conversation using the `keras-nlp` framework. It is designed for lightweight conversational tasks in Hinglish, optimized with the `JAX` backend for efficiency. ## Model Overview - **Base model**: `gemma3_instruct_1b` - **Library**: [`keras-nlp`](https://github.com/keras-team/keras-nlp) - **Backend**: JAX (recommended for best performance) - **Sampling Method**: Top-K (k=10) - **Use Case**: Conversational Hinglish response generation ## Usage ``` python from keras_nlp.models import Gemma3CausalLM from keras_nlp.samplers import TopKSampler model = Gemma3CausalLM.from_preset("hf://rudrashah/RLM_hingu") template = "Question:\n{question}\n\nAnswer:\n{answer}" prompt = template.format( question="Rudra acha ladka hai?", answer="", ) output = model.generate(prompt, max_length=256) print(output) ```