rufimelo commited on
Commit
b5a4969
·
1 Parent(s): 0ee2c5e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -25,16 +25,16 @@ The performance of Language Models can change drastically when there is a domain
25
 
26
  | Model | Arch. | #Layers | #Params |
27
  | ---------------------------------------- | ---------- | ------- | ------- |
28
- | `rufimelo/Legal_BERTimbau` | BERT-Large | 24 | 335M |
29
 
30
  ## Usage
31
 
32
  ```python
33
  from transformers import AutoTokenizer, AutoModelForMaskedLM
34
 
35
- tokenizer = AutoTokenizer.from_pretrained("rufimelo/Legal_BERTimbau")
36
 
37
- model = AutoModelForMaskedLM.from_pretrained("rufimelo/Legal_BERTimbau")
38
  ```
39
 
40
  ### Masked language modeling prediction example
@@ -43,8 +43,8 @@ model = AutoModelForMaskedLM.from_pretrained("rufimelo/Legal_BERTimbau")
43
  from transformers import pipeline
44
  from transformers import AutoTokenizer, AutoModelForMaskedLM
45
 
46
- tokenizer = AutoTokenizer.from_pretrained("rufimelo/Legal_BERTimbau")
47
- model = AutoModelForMaskedLM.from_pretrained("rufimelo/Legal_BERTimbau")
48
 
49
  pipe = pipeline('fill-mask', model=model, tokenizer=tokenizer)
50
  pipe('O advogado apresentou [MASK] para o juíz')
@@ -77,7 +77,7 @@ pipe('O advogado apresentou [MASK] para o juíz')
77
  import torch
78
  from transformers import AutoModel
79
 
80
- model = AutoModel.from_pretrained('rufimelo/Legal_BERTimbau')
81
  input_ids = tokenizer.encode('O advogado apresentou recurso para o juíz', return_tensors='pt')
82
 
83
  with torch.no_grad():
 
25
 
26
  | Model | Arch. | #Layers | #Params |
27
  | ---------------------------------------- | ---------- | ------- | ------- |
28
+ | `rufimelo/Legal-BERTimbau-large` | BERT-Large | 24 | 335M |
29
 
30
  ## Usage
31
 
32
  ```python
33
  from transformers import AutoTokenizer, AutoModelForMaskedLM
34
 
35
+ tokenizer = AutoTokenizer.from_pretrained("rufimelo/Legal-BERTimbau-large")
36
 
37
+ model = AutoModelForMaskedLM.from_pretrained("rufimelo/Legal-BERTimbau-large")
38
  ```
39
 
40
  ### Masked language modeling prediction example
 
43
  from transformers import pipeline
44
  from transformers import AutoTokenizer, AutoModelForMaskedLM
45
 
46
+ tokenizer = AutoTokenizer.from_pretrained("rufimelo/Legal-BERTimbau-large")
47
+ model = AutoModelForMaskedLM.from_pretrained("rufimelo/Legal-BERTimbau-large")
48
 
49
  pipe = pipeline('fill-mask', model=model, tokenizer=tokenizer)
50
  pipe('O advogado apresentou [MASK] para o juíz')
 
77
  import torch
78
  from transformers import AutoModel
79
 
80
+ model = AutoModel.from_pretrained('rufimelo/Legal-BERTimbau-large')
81
  input_ids = tokenizer.encode('O advogado apresentou recurso para o juíz', return_tensors='pt')
82
 
83
  with torch.no_grad():