Update README.md
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ The performance of Language Models can change drastically when there is a domain
|
|
25 |
|
26 |
| Model | Arch. | #Layers | #Params |
|
27 |
| ---------------------------------------- | ---------- | ------- | ------- |
|
28 |
-
| `rufimelo/
|
29 |
|
30 |
## Usage
|
31 |
|
32 |
```python
|
33 |
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
34 |
|
35 |
-
tokenizer = AutoTokenizer.from_pretrained("rufimelo/
|
36 |
|
37 |
-
model = AutoModelForMaskedLM.from_pretrained("rufimelo/
|
38 |
```
|
39 |
|
40 |
### Masked language modeling prediction example
|
@@ -43,8 +43,8 @@ model = AutoModelForMaskedLM.from_pretrained("rufimelo/Legal_BERTimbau")
|
|
43 |
from transformers import pipeline
|
44 |
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
45 |
|
46 |
-
tokenizer = AutoTokenizer.from_pretrained("rufimelo/
|
47 |
-
model = AutoModelForMaskedLM.from_pretrained("rufimelo/
|
48 |
|
49 |
pipe = pipeline('fill-mask', model=model, tokenizer=tokenizer)
|
50 |
pipe('O advogado apresentou [MASK] para o juíz')
|
@@ -77,7 +77,7 @@ pipe('O advogado apresentou [MASK] para o juíz')
|
|
77 |
import torch
|
78 |
from transformers import AutoModel
|
79 |
|
80 |
-
model = AutoModel.from_pretrained('rufimelo/
|
81 |
input_ids = tokenizer.encode('O advogado apresentou recurso para o juíz', return_tensors='pt')
|
82 |
|
83 |
with torch.no_grad():
|
|
|
25 |
|
26 |
| Model | Arch. | #Layers | #Params |
|
27 |
| ---------------------------------------- | ---------- | ------- | ------- |
|
28 |
+
| `rufimelo/Legal-BERTimbau-large` | BERT-Large | 24 | 335M |
|
29 |
|
30 |
## Usage
|
31 |
|
32 |
```python
|
33 |
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
34 |
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained("rufimelo/Legal-BERTimbau-large")
|
36 |
|
37 |
+
model = AutoModelForMaskedLM.from_pretrained("rufimelo/Legal-BERTimbau-large")
|
38 |
```
|
39 |
|
40 |
### Masked language modeling prediction example
|
|
|
43 |
from transformers import pipeline
|
44 |
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
45 |
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained("rufimelo/Legal-BERTimbau-large")
|
47 |
+
model = AutoModelForMaskedLM.from_pretrained("rufimelo/Legal-BERTimbau-large")
|
48 |
|
49 |
pipe = pipeline('fill-mask', model=model, tokenizer=tokenizer)
|
50 |
pipe('O advogado apresentou [MASK] para o juíz')
|
|
|
77 |
import torch
|
78 |
from transformers import AutoModel
|
79 |
|
80 |
+
model = AutoModel.from_pretrained('rufimelo/Legal-BERTimbau-large')
|
81 |
input_ids = tokenizer.encode('O advogado apresentou recurso para o juíz', return_tensors='pt')
|
82 |
|
83 |
with torch.no_grad():
|