ruisp commited on
Commit
bc6a231
1 Parent(s): 11ac510

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/hubert-base-ls960
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: hubert-base-ls960-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.87
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # hubert-base-ls960-finetuned-gtzan
32
+
33
+ This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the GTZAN dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.7810
36
+ - Accuracy: 0.87
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 4e-05
56
+ - train_batch_size: 2
57
+ - eval_batch_size: 2
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 6
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | 0.9364 | 1.0 | 450 | 1.2781 | 0.61 |
69
+ | 1.0205 | 2.0 | 900 | 1.2654 | 0.63 |
70
+ | 0.7681 | 3.0 | 1350 | 1.6762 | 0.62 |
71
+ | 0.6968 | 4.0 | 1800 | 0.9113 | 0.78 |
72
+ | 0.0467 | 5.0 | 2250 | 1.0105 | 0.82 |
73
+ | 0.1238 | 6.0 | 2700 | 0.7810 | 0.87 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.31.0
79
+ - Pytorch 2.0.1+cu118
80
+ - Datasets 2.14.4
81
+ - Tokenizers 0.13.3