File size: 2,689 Bytes
091d2c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46cd813
091d2c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46cd813
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: openrail
pipeline_tag: text-generation
library_name: transformers
language:
- zh
---


## Original model card 

Buy me a coffee if you like this project ;)
<a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a>

#### Description 

GGML Format model files for [This project](https://huggingface.co/ziqingyang/chinese-alpaca-2-7b).


### inference 


```python

import ctransformers

from ctransformers import AutoModelForCausalLM

model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file,
gpu_layers=32, model_type="llama")

manual_input: str = "Tell me about your last dream, please."


llm(manual_input, 
      max_new_tokens=256, 
      temperature=0.9, 
      top_p= 0.7)

```



# Original model card


**This is the full Chinese-Alpaca-2-7B model,which can be loaded directly for inference and full-parameter training.**

**Related models👇**
* Base models
  * [Chinese-LLaMA-2-7B (full model)](https://huggingface.co/ziqingyang/chinese-llama-2-7b)
  * [Chinese-LLaMA-2-LoRA-7B (LoRA model)](https://huggingface.co/ziqingyang/chinese-llama-2-lora-7b)
* Instruction/Chat models
  * [Chinese-Alpaca-2-7B (full model)](https://huggingface.co/ziqingyang/chinese-alpaca-2-7b)
  * [Chinese-Alpaca-2-LoRA-7B (LoRA model)](https://huggingface.co/ziqingyang/chinese-alpaca-2-lora-7b)


# Description of Chinese-LLaMA-Alpaca-2 
This project is based on the Llama-2, released by Meta, and it is the second generation of the Chinese LLaMA & Alpaca LLM project. We open-source Chinese LLaMA-2 (foundation model) and Alpaca-2 (instruction-following model). These models have been expanded and optimized with Chinese vocabulary beyond the original Llama-2. We used large-scale Chinese data for incremental pre-training, which further improved the fundamental semantic understanding of the Chinese language, resulting in a significant performance improvement compared to the first-generation models. The relevant models support a 4K context and can be expanded up to 18K+ using the NTK method.

The main contents of this project include:

* 🚀 New extended Chinese vocabulary beyond Llama-2, open-sourcing the Chinese LLaMA-2 and Alpaca-2 LLMs.
* 🚀 Open-sourced the pre-training and instruction finetuning (SFT) scripts for further tuning on user's data
* 🚀 Quickly deploy and experience the quantized LLMs on CPU/GPU of personal PC
* 🚀 Support for LLaMA ecosystems like 🤗transformers, llama.cpp, text-generation-webui, LangChain, vLLM etc.

Please refer to [https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/) for details.