File size: 2,689 Bytes
091d2c9 46cd813 091d2c9 46cd813 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: openrail
pipeline_tag: text-generation
library_name: transformers
language:
- zh
---
## Original model card
Buy me a coffee if you like this project ;)
<a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a>
#### Description
GGML Format model files for [This project](https://huggingface.co/ziqingyang/chinese-alpaca-2-7b).
### inference
```python
import ctransformers
from ctransformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file,
gpu_layers=32, model_type="llama")
manual_input: str = "Tell me about your last dream, please."
llm(manual_input,
max_new_tokens=256,
temperature=0.9,
top_p= 0.7)
```
# Original model card
**This is the full Chinese-Alpaca-2-7B model,which can be loaded directly for inference and full-parameter training.**
**Related models👇**
* Base models
* [Chinese-LLaMA-2-7B (full model)](https://huggingface.co/ziqingyang/chinese-llama-2-7b)
* [Chinese-LLaMA-2-LoRA-7B (LoRA model)](https://huggingface.co/ziqingyang/chinese-llama-2-lora-7b)
* Instruction/Chat models
* [Chinese-Alpaca-2-7B (full model)](https://huggingface.co/ziqingyang/chinese-alpaca-2-7b)
* [Chinese-Alpaca-2-LoRA-7B (LoRA model)](https://huggingface.co/ziqingyang/chinese-alpaca-2-lora-7b)
# Description of Chinese-LLaMA-Alpaca-2
This project is based on the Llama-2, released by Meta, and it is the second generation of the Chinese LLaMA & Alpaca LLM project. We open-source Chinese LLaMA-2 (foundation model) and Alpaca-2 (instruction-following model). These models have been expanded and optimized with Chinese vocabulary beyond the original Llama-2. We used large-scale Chinese data for incremental pre-training, which further improved the fundamental semantic understanding of the Chinese language, resulting in a significant performance improvement compared to the first-generation models. The relevant models support a 4K context and can be expanded up to 18K+ using the NTK method.
The main contents of this project include:
* 🚀 New extended Chinese vocabulary beyond Llama-2, open-sourcing the Chinese LLaMA-2 and Alpaca-2 LLMs.
* 🚀 Open-sourced the pre-training and instruction finetuning (SFT) scripts for further tuning on user's data
* 🚀 Quickly deploy and experience the quantized LLMs on CPU/GPU of personal PC
* 🚀 Support for LLaMA ecosystems like 🤗transformers, llama.cpp, text-generation-webui, LangChain, vLLM etc.
Please refer to [https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/) for details. |