s94lopez's picture
Upload folder using huggingface_hub
da7f475 verified
[2025-04-29 02:53:24,272][03043] Saving configuration to /content/train_dir/default_experiment/config.json...
[2025-04-29 02:53:24,273][03043] Rollout worker 0 uses device cpu
[2025-04-29 02:53:24,275][03043] Rollout worker 1 uses device cpu
[2025-04-29 02:53:24,275][03043] Rollout worker 2 uses device cpu
[2025-04-29 02:53:24,276][03043] Rollout worker 3 uses device cpu
[2025-04-29 02:53:24,278][03043] Rollout worker 4 uses device cpu
[2025-04-29 02:53:24,278][03043] Rollout worker 5 uses device cpu
[2025-04-29 02:53:24,279][03043] Rollout worker 6 uses device cpu
[2025-04-29 02:53:24,280][03043] Rollout worker 7 uses device cpu
[2025-04-29 02:53:24,363][03043] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2025-04-29 02:53:24,364][03043] InferenceWorker_p0-w0: min num requests: 2
[2025-04-29 02:53:24,368][03043] Starting seed is not provided
[2025-04-29 02:53:24,368][03043] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2025-04-29 02:53:24,369][03043] Initializing actor-critic model on device cuda:0
[2025-04-29 02:53:24,371][03043] RunningMeanStd input shape: (3, 72, 128)
[2025-04-29 02:53:24,375][03043] RunningMeanStd input shape: (1,)
[2025-04-29 02:53:24,387][03043] ConvEncoder: input_channels=3
[2025-04-29 02:53:24,666][03043] Conv encoder output size: 512
[2025-04-29 02:53:24,667][03043] Policy head output size: 512
[2025-04-29 02:53:24,723][03043] Created Actor Critic model with architecture:
[2025-04-29 02:53:24,724][03043] ActorCriticSharedWeights(
(obs_normalizer): ObservationNormalizer(
(running_mean_std): RunningMeanStdDictInPlace(
(running_mean_std): ModuleDict(
(obs): RunningMeanStdInPlace()
)
)
)
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
(encoder): VizdoomEncoder(
(basic_encoder): ConvEncoder(
(enc): RecursiveScriptModule(
original_name=ConvEncoderImpl
(conv_head): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Conv2d)
(1): RecursiveScriptModule(original_name=ELU)
(2): RecursiveScriptModule(original_name=Conv2d)
(3): RecursiveScriptModule(original_name=ELU)
(4): RecursiveScriptModule(original_name=Conv2d)
(5): RecursiveScriptModule(original_name=ELU)
)
(mlp_layers): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Linear)
(1): RecursiveScriptModule(original_name=ELU)
)
)
)
)
(core): ModelCoreRNN(
(core): GRU(512, 512)
)
(decoder): MlpDecoder(
(mlp): Identity()
)
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
(action_parameterization): ActionParameterizationDefault(
(distribution_linear): Linear(in_features=512, out_features=5, bias=True)
)
)
[2025-04-29 02:53:25,079][03043] Using optimizer <class 'torch.optim.adam.Adam'>
[2025-04-29 02:53:29,567][03043] No checkpoints found
[2025-04-29 02:53:29,568][03043] Did not load from checkpoint, starting from scratch!
[2025-04-29 02:53:29,570][03043] Initialized policy 0 weights for model version 0
[2025-04-29 02:53:29,571][03043] LearnerWorker_p0 finished initialization!
[2025-04-29 02:53:29,572][03043] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2025-04-29 02:53:29,622][03043] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-29 02:53:29,624][03043] Inference worker 0-0 is ready!
[2025-04-29 02:53:29,626][03043] All inference workers are ready! Signal rollout workers to start!
[2025-04-29 02:53:29,632][03043] Doom resolution: 160x120, resize resolution: (128, 72)
[2025-04-29 02:53:29,996][03043] Decorrelating experience for 0 frames...
[2025-04-29 02:53:30,233][03043] Decorrelating experience for 32 frames...
[2025-04-29 02:53:30,522][03043] Decorrelating experience for 64 frames...
[2025-04-29 02:53:30,798][03043] Decorrelating experience for 96 frames...
[2025-04-29 02:53:31,117][03043] Decorrelating experience for 0 frames...
[2025-04-29 02:53:31,373][03043] Decorrelating experience for 32 frames...
[2025-04-29 02:53:31,647][03043] Decorrelating experience for 64 frames...
[2025-04-29 02:53:32,024][03043] Decorrelating experience for 96 frames...
[2025-04-29 02:53:32,505][03043] Decorrelating experience for 0 frames...
[2025-04-29 02:53:32,873][03043] Decorrelating experience for 32 frames...
[2025-04-29 02:53:33,299][03043] Decorrelating experience for 64 frames...
[2025-04-29 02:53:33,775][03043] Decorrelating experience for 96 frames...
[2025-04-29 02:53:34,249][03043] Decorrelating experience for 0 frames...
[2025-04-29 02:53:34,483][03043] Decorrelating experience for 32 frames...
[2025-04-29 02:53:34,759][03043] Decorrelating experience for 64 frames...
[2025-04-29 02:53:35,035][03043] Decorrelating experience for 96 frames...
[2025-04-29 02:53:35,351][03043] Decorrelating experience for 0 frames...
[2025-04-29 02:53:35,599][03043] Decorrelating experience for 32 frames...
[2025-04-29 02:53:35,868][03043] Decorrelating experience for 64 frames...
[2025-04-29 02:53:36,149][03043] Decorrelating experience for 96 frames...
[2025-04-29 02:53:36,468][03043] Decorrelating experience for 0 frames...
[2025-04-29 02:53:36,718][03043] Decorrelating experience for 32 frames...
[2025-04-29 02:53:36,991][03043] Decorrelating experience for 64 frames...
[2025-04-29 02:53:37,273][03043] Decorrelating experience for 96 frames...
[2025-04-29 02:53:37,600][03043] Decorrelating experience for 0 frames...
[2025-04-29 02:53:37,846][03043] Decorrelating experience for 32 frames...
[2025-04-29 02:53:38,192][03043] Decorrelating experience for 64 frames...
[2025-04-29 02:53:38,639][03043] Decorrelating experience for 96 frames...
[2025-04-29 02:53:39,140][03043] Decorrelating experience for 0 frames...
[2025-04-29 02:53:39,386][03043] Decorrelating experience for 32 frames...
[2025-04-29 02:53:39,666][03043] Decorrelating experience for 64 frames...
[2025-04-29 02:53:39,962][03043] Decorrelating experience for 96 frames...
[2025-04-29 02:53:40,999][03043] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-29 02:53:41,037][03043] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-29 02:53:44,359][03043] Fps is (10 sec: 1219.4, 60 sec: 277.9, 300 sec: 277.9). Total num frames: 4096. Throughput: 0: 43.4. Samples: 640. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
[2025-04-29 02:53:44,361][03043] Avg episode reward: [(0, '1.189')]
[2025-04-29 02:53:44,453][03043] Heartbeat connected on Batcher_0
[2025-04-29 02:53:44,456][03043] Heartbeat connected on LearnerWorker_p0
[2025-04-29 02:53:44,457][03043] Heartbeat connected on InferenceWorker_p0-w0
[2025-04-29 02:53:44,458][03043] Heartbeat connected on RolloutWorker_w0
[2025-04-29 02:53:44,459][03043] Heartbeat connected on RolloutWorker_w1
[2025-04-29 02:53:44,460][03043] Heartbeat connected on RolloutWorker_w2
[2025-04-29 02:53:44,460][03043] Heartbeat connected on RolloutWorker_w3
[2025-04-29 02:53:44,461][03043] Heartbeat connected on RolloutWorker_w4
[2025-04-29 02:53:44,462][03043] Heartbeat connected on RolloutWorker_w5
[2025-04-29 02:53:44,463][03043] Heartbeat connected on RolloutWorker_w6
[2025-04-29 02:53:44,463][03043] Heartbeat connected on RolloutWorker_w7
[2025-04-29 02:53:48,861][03043] Fps is (10 sec: 2093.9, 60 sec: 851.6, 300 sec: 851.6). Total num frames: 16384. Throughput: 0: 164.7. Samples: 3168. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:53:48,862][03043] Avg episode reward: [(0, '2.979')]
[2025-04-29 02:53:53,868][03043] Fps is (10 sec: 3015.0, 60 sec: 1351.4, 300 sec: 1351.4). Total num frames: 32768. Throughput: 0: 356.3. Samples: 8640. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:53:53,869][03043] Avg episode reward: [(0, '3.614')]
[2025-04-29 02:53:58,866][03043] Fps is (10 sec: 3275.1, 60 sec: 1680.7, 300 sec: 1680.7). Total num frames: 49152. Throughput: 0: 388.4. Samples: 11360. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:53:58,868][03043] Avg episode reward: [(0, '4.245')]
[2025-04-29 02:54:03,854][03043] Fps is (10 sec: 3281.6, 60 sec: 1914.5, 300 sec: 1914.5). Total num frames: 65536. Throughput: 0: 473.0. Samples: 16192. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:54:03,854][03043] Avg episode reward: [(0, '4.480')]
[2025-04-29 02:54:08,856][03043] Fps is (10 sec: 3690.4, 60 sec: 2192.4, 300 sec: 2192.4). Total num frames: 86016. Throughput: 0: 549.7. Samples: 21568. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:54:08,857][03043] Avg episode reward: [(0, '4.491')]
[2025-04-29 02:54:13,866][03043] Fps is (10 sec: 3681.6, 60 sec: 2314.4, 300 sec: 2314.4). Total num frames: 102400. Throughput: 0: 540.3. Samples: 23904. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:54:13,867][03043] Avg episode reward: [(0, '4.466')]
[2025-04-29 02:54:13,873][03043] Saving new best policy, reward=4.466!
[2025-04-29 02:54:18,844][03043] Fps is (10 sec: 3280.5, 60 sec: 2413.2, 300 sec: 2413.2). Total num frames: 118784. Throughput: 0: 766.1. Samples: 28992. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:54:18,845][03043] Avg episode reward: [(0, '4.531')]
[2025-04-29 02:54:18,882][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000029_118784.pth...
[2025-04-29 02:54:18,934][03043] Saving new best policy, reward=4.531!
[2025-04-29 02:54:23,854][03043] Fps is (10 sec: 3280.8, 60 sec: 2492.4, 300 sec: 2492.4). Total num frames: 135168. Throughput: 0: 796.7. Samples: 34112. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:54:23,855][03043] Avg episode reward: [(0, '4.567')]
[2025-04-29 02:54:23,913][03043] Saving new best policy, reward=4.567!
[2025-04-29 02:54:28,853][03043] Fps is (10 sec: 3273.9, 60 sec: 2558.6, 300 sec: 2558.6). Total num frames: 151552. Throughput: 0: 802.6. Samples: 36352. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:54:28,856][03043] Avg episode reward: [(0, '4.349')]
[2025-04-29 02:54:33,865][03043] Fps is (10 sec: 3273.2, 60 sec: 3176.6, 300 sec: 2614.0). Total num frames: 167936. Throughput: 0: 856.8. Samples: 41728. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:54:33,866][03043] Avg episode reward: [(0, '4.367')]
[2025-04-29 02:54:38,854][03043] Fps is (10 sec: 3276.5, 60 sec: 3188.0, 300 sec: 2662.3). Total num frames: 184320. Throughput: 0: 843.6. Samples: 46592. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:54:38,855][03043] Avg episode reward: [(0, '4.521')]
[2025-04-29 02:54:43,865][03043] Fps is (10 sec: 3277.0, 60 sec: 3304.0, 300 sec: 2703.3). Total num frames: 200704. Throughput: 0: 839.9. Samples: 49152. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:54:43,866][03043] Avg episode reward: [(0, '4.638')]
[2025-04-29 02:54:43,958][03043] Saving new best policy, reward=4.638!
[2025-04-29 02:54:48,847][03043] Fps is (10 sec: 3689.1, 60 sec: 3414.2, 300 sec: 2791.8). Total num frames: 221184. Throughput: 0: 849.9. Samples: 54432. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:54:48,851][03043] Avg episode reward: [(0, '4.553')]
[2025-04-29 02:54:53,865][03043] Fps is (10 sec: 3276.7, 60 sec: 3345.3, 300 sec: 2771.4). Total num frames: 233472. Throughput: 0: 835.4. Samples: 59168. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:54:53,866][03043] Avg episode reward: [(0, '4.481')]
[2025-04-29 02:54:58,844][03043] Fps is (10 sec: 3277.7, 60 sec: 3414.6, 300 sec: 2846.3). Total num frames: 253952. Throughput: 0: 841.0. Samples: 61728. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:54:58,845][03043] Avg episode reward: [(0, '4.550')]
[2025-04-29 02:55:03,841][03043] Fps is (10 sec: 3695.2, 60 sec: 3414.0, 300 sec: 2869.2). Total num frames: 270336. Throughput: 0: 844.1. Samples: 66976. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:55:03,842][03043] Avg episode reward: [(0, '4.602')]
[2025-04-29 02:55:08,862][03043] Fps is (10 sec: 3270.8, 60 sec: 3344.7, 300 sec: 2889.1). Total num frames: 286720. Throughput: 0: 845.4. Samples: 72160. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:55:08,863][03043] Avg episode reward: [(0, '4.429')]
[2025-04-29 02:55:13,847][03043] Fps is (10 sec: 3274.9, 60 sec: 3346.2, 300 sec: 2908.2). Total num frames: 303104. Throughput: 0: 854.9. Samples: 74816. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:55:13,848][03043] Avg episode reward: [(0, '4.380')]
[2025-04-29 02:55:18,840][03043] Fps is (10 sec: 3284.1, 60 sec: 3345.3, 300 sec: 2925.2). Total num frames: 319488. Throughput: 0: 841.7. Samples: 79584. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:55:18,841][03043] Avg episode reward: [(0, '4.450')]
[2025-04-29 02:55:18,881][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000078_319488.pth...
[2025-04-29 02:55:23,857][03043] Fps is (10 sec: 3682.8, 60 sec: 3413.2, 300 sec: 2976.0). Total num frames: 339968. Throughput: 0: 854.0. Samples: 85024. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:55:23,858][03043] Avg episode reward: [(0, '4.396')]
[2025-04-29 02:55:28,849][03043] Fps is (10 sec: 3683.2, 60 sec: 3413.6, 300 sec: 2988.8). Total num frames: 356352. Throughput: 0: 854.3. Samples: 87584. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:55:28,850][03043] Avg episode reward: [(0, '4.356')]
[2025-04-29 02:55:33,859][03043] Fps is (10 sec: 3276.0, 60 sec: 3413.7, 300 sec: 3000.2). Total num frames: 372736. Throughput: 0: 844.6. Samples: 92448. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:55:33,860][03043] Avg episode reward: [(0, '4.289')]
[2025-04-29 02:55:38,840][03043] Fps is (10 sec: 3279.6, 60 sec: 3414.1, 300 sec: 3011.3). Total num frames: 389120. Throughput: 0: 859.5. Samples: 97824. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:55:38,842][03043] Avg episode reward: [(0, '4.433')]
[2025-04-29 02:55:43,851][03043] Fps is (10 sec: 3279.3, 60 sec: 3414.1, 300 sec: 3021.0). Total num frames: 405504. Throughput: 0: 856.7. Samples: 100288. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:55:43,853][03043] Avg episode reward: [(0, '4.437')]
[2025-04-29 02:55:48,858][03043] Fps is (10 sec: 3270.9, 60 sec: 3344.4, 300 sec: 3030.0). Total num frames: 421888. Throughput: 0: 852.3. Samples: 105344. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:55:48,859][03043] Avg episode reward: [(0, '4.516')]
[2025-04-29 02:55:53,844][03043] Fps is (10 sec: 3689.0, 60 sec: 3482.8, 300 sec: 3067.3). Total num frames: 442368. Throughput: 0: 853.7. Samples: 110560. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:55:53,845][03043] Avg episode reward: [(0, '4.444')]
[2025-04-29 02:55:58,870][03043] Fps is (10 sec: 3272.8, 60 sec: 3343.6, 300 sec: 3046.3). Total num frames: 454656. Throughput: 0: 842.2. Samples: 112736. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:55:58,871][03043] Avg episode reward: [(0, '4.370')]
[2025-04-29 02:56:03,868][03043] Fps is (10 sec: 3269.2, 60 sec: 3411.8, 300 sec: 3080.4). Total num frames: 475136. Throughput: 0: 854.9. Samples: 118080. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:56:03,869][03043] Avg episode reward: [(0, '4.490')]
[2025-04-29 02:56:08,858][03043] Fps is (10 sec: 3691.0, 60 sec: 3413.6, 300 sec: 3086.7). Total num frames: 491520. Throughput: 0: 842.6. Samples: 122944. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:56:08,861][03043] Avg episode reward: [(0, '4.585')]
[2025-04-29 02:56:13,868][03043] Fps is (10 sec: 3276.7, 60 sec: 3412.1, 300 sec: 3092.3). Total num frames: 507904. Throughput: 0: 843.0. Samples: 125536. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:56:13,869][03043] Avg episode reward: [(0, '4.577')]
[2025-04-29 02:56:18,852][03043] Fps is (10 sec: 3278.6, 60 sec: 3412.6, 300 sec: 3098.1). Total num frames: 524288. Throughput: 0: 853.5. Samples: 130848. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:56:18,853][03043] Avg episode reward: [(0, '4.578')]
[2025-04-29 02:56:18,894][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000128_524288.pth...
[2025-04-29 02:56:18,982][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000029_118784.pth
[2025-04-29 02:56:23,850][03043] Fps is (10 sec: 3282.8, 60 sec: 3345.5, 300 sec: 3103.2). Total num frames: 540672. Throughput: 0: 841.1. Samples: 135680. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:56:23,851][03043] Avg episode reward: [(0, '4.486')]
[2025-04-29 02:56:28,850][03043] Fps is (10 sec: 3687.4, 60 sec: 3413.3, 300 sec: 3130.9). Total num frames: 561152. Throughput: 0: 846.3. Samples: 138368. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:56:28,851][03043] Avg episode reward: [(0, '4.588')]
[2025-04-29 02:56:33,860][03043] Fps is (10 sec: 3682.5, 60 sec: 3413.3, 300 sec: 3134.7). Total num frames: 577536. Throughput: 0: 854.7. Samples: 143808. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:56:33,863][03043] Avg episode reward: [(0, '4.593')]
[2025-04-29 02:56:38,857][03043] Fps is (10 sec: 3274.4, 60 sec: 3412.4, 300 sec: 3138.5). Total num frames: 593920. Throughput: 0: 846.7. Samples: 148672. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:56:38,858][03043] Avg episode reward: [(0, '4.471')]
[2025-04-29 02:56:43,861][03043] Fps is (10 sec: 3276.4, 60 sec: 3412.8, 300 sec: 3142.0). Total num frames: 610304. Throughput: 0: 861.3. Samples: 151488. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:56:43,863][03043] Avg episode reward: [(0, '4.341')]
[2025-04-29 02:56:48,837][03043] Fps is (10 sec: 3283.5, 60 sec: 3414.5, 300 sec: 3145.8). Total num frames: 626688. Throughput: 0: 848.9. Samples: 156256. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:56:48,838][03043] Avg episode reward: [(0, '4.453')]
[2025-04-29 02:56:53,902][03043] Fps is (10 sec: 3263.5, 60 sec: 3341.8, 300 sec: 3148.0). Total num frames: 643072. Throughput: 0: 858.2. Samples: 161600. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:56:53,903][03043] Avg episode reward: [(0, '4.342')]
[2025-04-29 02:56:58,847][03043] Fps is (10 sec: 3682.7, 60 sec: 3483.0, 300 sec: 3171.5). Total num frames: 663552. Throughput: 0: 862.3. Samples: 164320. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:56:58,848][03043] Avg episode reward: [(0, '4.447')]
[2025-04-29 02:57:03,861][03043] Fps is (10 sec: 3701.8, 60 sec: 3413.7, 300 sec: 3173.7). Total num frames: 679936. Throughput: 0: 849.6. Samples: 169088. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:57:03,862][03043] Avg episode reward: [(0, '4.418')]
[2025-04-29 02:57:08,864][03043] Fps is (10 sec: 3271.2, 60 sec: 3413.0, 300 sec: 3176.0). Total num frames: 696320. Throughput: 0: 860.2. Samples: 174400. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:57:08,865][03043] Avg episode reward: [(0, '4.453')]
[2025-04-29 02:57:13,855][03043] Fps is (10 sec: 3278.7, 60 sec: 3414.1, 300 sec: 3178.4). Total num frames: 712704. Throughput: 0: 856.8. Samples: 176928. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:57:13,856][03043] Avg episode reward: [(0, '4.465')]
[2025-04-29 02:57:18,860][03043] Fps is (10 sec: 3278.0, 60 sec: 3412.9, 300 sec: 3180.5). Total num frames: 729088. Throughput: 0: 846.9. Samples: 181920. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:57:18,862][03043] Avg episode reward: [(0, '4.620')]
[2025-04-29 02:57:18,900][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000178_729088.pth...
[2025-04-29 02:57:18,954][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000078_319488.pth
[2025-04-29 02:57:23,886][03043] Fps is (10 sec: 3266.8, 60 sec: 3411.3, 300 sec: 3182.2). Total num frames: 745472. Throughput: 0: 855.6. Samples: 187200. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:57:23,887][03043] Avg episode reward: [(0, '4.543')]
[2025-04-29 02:57:28,858][03043] Fps is (10 sec: 3277.7, 60 sec: 3344.6, 300 sec: 3184.5). Total num frames: 761856. Throughput: 0: 843.4. Samples: 189440. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:57:28,859][03043] Avg episode reward: [(0, '4.612')]
[2025-04-29 02:57:33,858][03043] Fps is (10 sec: 3696.7, 60 sec: 3413.5, 300 sec: 3203.2). Total num frames: 782336. Throughput: 0: 852.9. Samples: 194656. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:57:33,859][03043] Avg episode reward: [(0, '4.838')]
[2025-04-29 02:57:33,894][03043] Saving new best policy, reward=4.838!
[2025-04-29 02:57:38,857][03043] Fps is (10 sec: 3276.9, 60 sec: 3345.1, 300 sec: 3188.2). Total num frames: 794624. Throughput: 0: 842.8. Samples: 199488. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:57:38,859][03043] Avg episode reward: [(0, '5.007')]
[2025-04-29 02:57:38,920][03043] Saving new best policy, reward=5.007!
[2025-04-29 02:57:43,862][03043] Fps is (10 sec: 3275.3, 60 sec: 3413.3, 300 sec: 3206.0). Total num frames: 815104. Throughput: 0: 833.8. Samples: 201856. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:57:43,864][03043] Avg episode reward: [(0, '4.832')]
[2025-04-29 02:57:48,859][03043] Fps is (10 sec: 3685.8, 60 sec: 3412.1, 300 sec: 3207.4). Total num frames: 831488. Throughput: 0: 845.5. Samples: 207136. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:57:48,860][03043] Avg episode reward: [(0, '4.933')]
[2025-04-29 02:57:53,849][03043] Fps is (10 sec: 3281.0, 60 sec: 3416.3, 300 sec: 3208.9). Total num frames: 847872. Throughput: 0: 838.0. Samples: 212096. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:57:53,850][03043] Avg episode reward: [(0, '4.935')]
[2025-04-29 02:57:58,846][03043] Fps is (10 sec: 3281.0, 60 sec: 3345.1, 300 sec: 3210.2). Total num frames: 864256. Throughput: 0: 844.3. Samples: 214912. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:57:58,848][03043] Avg episode reward: [(0, '5.234')]
[2025-04-29 02:57:58,887][03043] Saving new best policy, reward=5.234!
[2025-04-29 02:58:03,850][03043] Fps is (10 sec: 3276.8, 60 sec: 3345.7, 300 sec: 3211.3). Total num frames: 880640. Throughput: 0: 848.6. Samples: 220096. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:58:03,851][03043] Avg episode reward: [(0, '5.250')]
[2025-04-29 02:58:03,899][03043] Saving new best policy, reward=5.250!
[2025-04-29 02:58:08,902][03043] Fps is (10 sec: 3258.5, 60 sec: 3342.9, 300 sec: 3211.9). Total num frames: 897024. Throughput: 0: 841.6. Samples: 225088. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:58:08,904][03043] Avg episode reward: [(0, '5.477')]
[2025-04-29 02:58:08,933][03043] Saving new best policy, reward=5.477!
[2025-04-29 02:58:13,862][03043] Fps is (10 sec: 3681.7, 60 sec: 3412.9, 300 sec: 3227.9). Total num frames: 917504. Throughput: 0: 849.7. Samples: 227680. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:58:13,864][03043] Avg episode reward: [(0, '5.666')]
[2025-04-29 02:58:13,870][03043] Saving new best policy, reward=5.666!
[2025-04-29 02:58:18,839][03043] Fps is (10 sec: 3710.0, 60 sec: 3414.6, 300 sec: 3229.0). Total num frames: 933888. Throughput: 0: 841.6. Samples: 232512. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:58:18,840][03043] Avg episode reward: [(0, '5.589')]
[2025-04-29 02:58:18,880][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000228_933888.pth...
[2025-04-29 02:58:18,927][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000128_524288.pth
[2025-04-29 02:58:23,866][03043] Fps is (10 sec: 3275.7, 60 sec: 3414.5, 300 sec: 3229.5). Total num frames: 950272. Throughput: 0: 852.5. Samples: 237856. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:58:23,867][03043] Avg episode reward: [(0, '5.781')]
[2025-04-29 02:58:23,902][03043] Saving new best policy, reward=5.781!
[2025-04-29 02:58:28,865][03043] Fps is (10 sec: 3268.4, 60 sec: 3412.9, 300 sec: 3358.0). Total num frames: 966656. Throughput: 0: 860.4. Samples: 240576. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:58:28,868][03043] Avg episode reward: [(0, '5.805')]
[2025-04-29 02:58:28,915][03043] Saving new best policy, reward=5.805!
[2025-04-29 02:58:33,855][03043] Fps is (10 sec: 3280.5, 60 sec: 3345.3, 300 sec: 3357.2). Total num frames: 983040. Throughput: 0: 849.2. Samples: 245344. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:58:33,856][03043] Avg episode reward: [(0, '5.898')]
[2025-04-29 02:58:33,891][03043] Saving new best policy, reward=5.898!
[2025-04-29 02:58:38,863][03043] Fps is (10 sec: 3686.9, 60 sec: 3481.3, 300 sec: 3393.6). Total num frames: 1003520. Throughput: 0: 860.2. Samples: 250816. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:58:38,864][03043] Avg episode reward: [(0, '6.047')]
[2025-04-29 02:58:38,875][03043] Saving new best policy, reward=6.047!
[2025-04-29 02:58:43,848][03043] Fps is (10 sec: 3278.9, 60 sec: 3345.9, 300 sec: 3388.0). Total num frames: 1015808. Throughput: 0: 849.0. Samples: 253120. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:58:43,849][03043] Avg episode reward: [(0, '6.212')]
[2025-04-29 02:58:43,882][03043] Saving new best policy, reward=6.212!
[2025-04-29 02:58:48,865][03043] Fps is (10 sec: 3276.2, 60 sec: 3413.0, 300 sec: 3401.8). Total num frames: 1036288. Throughput: 0: 845.2. Samples: 258144. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:58:48,866][03043] Avg episode reward: [(0, '5.934')]
[2025-04-29 02:58:53,869][03043] Fps is (10 sec: 3678.8, 60 sec: 3412.2, 300 sec: 3401.7). Total num frames: 1052672. Throughput: 0: 856.8. Samples: 263616. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:58:53,870][03043] Avg episode reward: [(0, '6.050')]
[2025-04-29 02:58:58,861][03043] Fps is (10 sec: 3278.2, 60 sec: 3412.5, 300 sec: 3401.7). Total num frames: 1069056. Throughput: 0: 845.5. Samples: 265728. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:58:58,862][03043] Avg episode reward: [(0, '6.047')]
[2025-04-29 02:59:03,856][03043] Fps is (10 sec: 3281.1, 60 sec: 3413.0, 300 sec: 3387.9). Total num frames: 1085440. Throughput: 0: 860.1. Samples: 271232. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:59:03,857][03043] Avg episode reward: [(0, '6.451')]
[2025-04-29 02:59:03,894][03043] Saving new best policy, reward=6.451!
[2025-04-29 02:59:08,880][03043] Fps is (10 sec: 3270.6, 60 sec: 3414.6, 300 sec: 3387.7). Total num frames: 1101824. Throughput: 0: 851.6. Samples: 276192. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:59:08,881][03043] Avg episode reward: [(0, '6.928')]
[2025-04-29 02:59:08,892][03043] Saving new best policy, reward=6.928!
[2025-04-29 02:59:13,859][03043] Fps is (10 sec: 3685.2, 60 sec: 3413.5, 300 sec: 3401.6). Total num frames: 1122304. Throughput: 0: 846.3. Samples: 278656. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:59:13,860][03043] Avg episode reward: [(0, '7.405')]
[2025-04-29 02:59:13,894][03043] Saving new best policy, reward=7.405!
[2025-04-29 02:59:18,849][03043] Fps is (10 sec: 3697.8, 60 sec: 3412.8, 300 sec: 3401.8). Total num frames: 1138688. Throughput: 0: 859.8. Samples: 284032. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:59:18,850][03043] Avg episode reward: [(0, '7.473')]
[2025-04-29 02:59:18,886][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000278_1138688.pth...
[2025-04-29 02:59:18,938][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000178_729088.pth
[2025-04-29 02:59:18,944][03043] Saving new best policy, reward=7.473!
[2025-04-29 02:59:23,861][03043] Fps is (10 sec: 3276.3, 60 sec: 3413.6, 300 sec: 3401.7). Total num frames: 1155072. Throughput: 0: 844.8. Samples: 288832. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:59:23,862][03043] Avg episode reward: [(0, '7.521')]
[2025-04-29 02:59:23,897][03043] Saving new best policy, reward=7.521!
[2025-04-29 02:59:28,854][03043] Fps is (10 sec: 3275.0, 60 sec: 3413.9, 300 sec: 3401.9). Total num frames: 1171456. Throughput: 0: 851.1. Samples: 291424. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:59:28,856][03043] Avg episode reward: [(0, '7.514')]
[2025-04-29 02:59:33,847][03043] Fps is (10 sec: 3281.2, 60 sec: 3413.7, 300 sec: 3401.8). Total num frames: 1187840. Throughput: 0: 860.1. Samples: 296832. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:59:33,849][03043] Avg episode reward: [(0, '7.382')]
[2025-04-29 02:59:38,857][03043] Fps is (10 sec: 3275.9, 60 sec: 3345.4, 300 sec: 3401.9). Total num frames: 1204224. Throughput: 0: 848.6. Samples: 301792. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:59:38,858][03043] Avg episode reward: [(0, '7.501')]
[2025-04-29 02:59:43,858][03043] Fps is (10 sec: 3682.5, 60 sec: 3481.0, 300 sec: 3401.6). Total num frames: 1224704. Throughput: 0: 859.8. Samples: 304416. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:59:43,859][03043] Avg episode reward: [(0, '8.024')]
[2025-04-29 02:59:43,898][03043] Saving new best policy, reward=8.024!
[2025-04-29 02:59:48,892][03043] Fps is (10 sec: 3673.4, 60 sec: 3411.8, 300 sec: 3415.3). Total num frames: 1241088. Throughput: 0: 844.8. Samples: 309280. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:59:48,895][03043] Avg episode reward: [(0, '8.432')]
[2025-04-29 02:59:48,932][03043] Saving new best policy, reward=8.432!
[2025-04-29 02:59:53,848][03043] Fps is (10 sec: 3280.2, 60 sec: 3414.5, 300 sec: 3401.7). Total num frames: 1257472. Throughput: 0: 853.9. Samples: 314592. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:59:53,849][03043] Avg episode reward: [(0, '7.912')]
[2025-04-29 02:59:58,857][03043] Fps is (10 sec: 3288.4, 60 sec: 3413.6, 300 sec: 3401.6). Total num frames: 1273856. Throughput: 0: 859.1. Samples: 317312. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 02:59:58,860][03043] Avg episode reward: [(0, '7.329')]
[2025-04-29 03:00:03,857][03043] Fps is (10 sec: 3273.8, 60 sec: 3413.3, 300 sec: 3401.8). Total num frames: 1290240. Throughput: 0: 847.5. Samples: 322176. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:00:03,858][03043] Avg episode reward: [(0, '7.385')]
[2025-04-29 03:00:08,864][03043] Fps is (10 sec: 3683.9, 60 sec: 3482.5, 300 sec: 3415.5). Total num frames: 1310720. Throughput: 0: 861.8. Samples: 327616. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:00:08,865][03043] Avg episode reward: [(0, '7.989')]
[2025-04-29 03:00:13,846][03043] Fps is (10 sec: 3280.2, 60 sec: 3345.8, 300 sec: 3401.7). Total num frames: 1323008. Throughput: 0: 858.5. Samples: 330048. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:00:13,848][03043] Avg episode reward: [(0, '8.401')]
[2025-04-29 03:00:18,836][03043] Fps is (10 sec: 3285.9, 60 sec: 3414.1, 300 sec: 3402.0). Total num frames: 1343488. Throughput: 0: 847.1. Samples: 334944. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:00:18,837][03043] Avg episode reward: [(0, '8.758')]
[2025-04-29 03:00:18,878][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000328_1343488.pth...
[2025-04-29 03:00:18,926][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000228_933888.pth
[2025-04-29 03:00:18,933][03043] Saving new best policy, reward=8.758!
[2025-04-29 03:00:23,839][03043] Fps is (10 sec: 3689.1, 60 sec: 3414.6, 300 sec: 3401.9). Total num frames: 1359872. Throughput: 0: 857.9. Samples: 340384. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:00:23,840][03043] Avg episode reward: [(0, '8.252')]
[2025-04-29 03:00:28,861][03043] Fps is (10 sec: 3268.6, 60 sec: 3412.9, 300 sec: 3401.7). Total num frames: 1376256. Throughput: 0: 846.2. Samples: 342496. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:00:28,865][03043] Avg episode reward: [(0, '8.246')]
[2025-04-29 03:00:33,865][03043] Fps is (10 sec: 3677.0, 60 sec: 3480.6, 300 sec: 3415.4). Total num frames: 1396736. Throughput: 0: 865.2. Samples: 348192. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:00:33,866][03043] Avg episode reward: [(0, '8.056')]
[2025-04-29 03:00:38,937][03043] Fps is (10 sec: 3658.7, 60 sec: 3477.0, 300 sec: 3414.7). Total num frames: 1413120. Throughput: 0: 855.2. Samples: 353152. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:00:38,939][03043] Avg episode reward: [(0, '8.061')]
[2025-04-29 03:00:43,843][03043] Fps is (10 sec: 3283.9, 60 sec: 3414.2, 300 sec: 3415.8). Total num frames: 1429504. Throughput: 0: 852.9. Samples: 355680. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:00:43,844][03043] Avg episode reward: [(0, '7.849')]
[2025-04-29 03:00:48,863][03043] Fps is (10 sec: 3301.2, 60 sec: 3415.0, 300 sec: 3401.5). Total num frames: 1445888. Throughput: 0: 865.3. Samples: 361120. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:00:48,864][03043] Avg episode reward: [(0, '8.231')]
[2025-04-29 03:00:53,847][03043] Fps is (10 sec: 3275.5, 60 sec: 3413.4, 300 sec: 3415.9). Total num frames: 1462272. Throughput: 0: 851.5. Samples: 365920. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:00:53,848][03043] Avg episode reward: [(0, '8.265')]
[2025-04-29 03:00:58,863][03043] Fps is (10 sec: 3686.2, 60 sec: 3481.2, 300 sec: 3415.7). Total num frames: 1482752. Throughput: 0: 859.4. Samples: 368736. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:00:58,866][03043] Avg episode reward: [(0, '8.129')]
[2025-04-29 03:01:03,842][03043] Fps is (10 sec: 3688.1, 60 sec: 3482.4, 300 sec: 3415.8). Total num frames: 1499136. Throughput: 0: 867.4. Samples: 373984. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:01:03,844][03043] Avg episode reward: [(0, '8.061')]
[2025-04-29 03:01:08,846][03043] Fps is (10 sec: 3282.6, 60 sec: 3414.4, 300 sec: 3415.9). Total num frames: 1515520. Throughput: 0: 856.1. Samples: 378912. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:01:08,847][03043] Avg episode reward: [(0, '8.537')]
[2025-04-29 03:01:13,858][03043] Fps is (10 sec: 3271.6, 60 sec: 3480.9, 300 sec: 3415.6). Total num frames: 1531904. Throughput: 0: 869.7. Samples: 381632. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:01:13,859][03043] Avg episode reward: [(0, '9.516')]
[2025-04-29 03:01:13,897][03043] Saving new best policy, reward=9.516!
[2025-04-29 03:01:18,861][03043] Fps is (10 sec: 3271.8, 60 sec: 3411.9, 300 sec: 3415.5). Total num frames: 1548288. Throughput: 0: 849.1. Samples: 386400. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:01:18,862][03043] Avg episode reward: [(0, '9.792')]
[2025-04-29 03:01:18,902][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000378_1548288.pth...
[2025-04-29 03:01:18,949][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000278_1138688.pth
[2025-04-29 03:01:18,955][03043] Saving new best policy, reward=9.792!
[2025-04-29 03:01:23,845][03043] Fps is (10 sec: 3281.2, 60 sec: 3413.0, 300 sec: 3401.8). Total num frames: 1564672. Throughput: 0: 854.4. Samples: 391520. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:01:23,846][03043] Avg episode reward: [(0, '10.228')]
[2025-04-29 03:01:23,878][03043] Saving new best policy, reward=10.228!
[2025-04-29 03:01:28,867][03043] Fps is (10 sec: 3274.8, 60 sec: 3413.0, 300 sec: 3401.7). Total num frames: 1581056. Throughput: 0: 857.8. Samples: 394304. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:01:28,868][03043] Avg episode reward: [(0, '9.106')]
[2025-04-29 03:01:33,850][03043] Fps is (10 sec: 3275.1, 60 sec: 3345.9, 300 sec: 3401.8). Total num frames: 1597440. Throughput: 0: 843.6. Samples: 399072. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:01:33,851][03043] Avg episode reward: [(0, '9.578')]
[2025-04-29 03:01:38,865][03043] Fps is (10 sec: 3687.3, 60 sec: 3417.5, 300 sec: 3415.6). Total num frames: 1617920. Throughput: 0: 856.6. Samples: 404480. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:01:38,866][03043] Avg episode reward: [(0, '9.347')]
[2025-04-29 03:01:43,865][03043] Fps is (10 sec: 3271.8, 60 sec: 3343.8, 300 sec: 3401.4). Total num frames: 1630208. Throughput: 0: 849.0. Samples: 406944. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:01:43,866][03043] Avg episode reward: [(0, '9.157')]
[2025-04-29 03:01:48,839][03043] Fps is (10 sec: 3285.1, 60 sec: 3414.7, 300 sec: 3416.4). Total num frames: 1650688. Throughput: 0: 843.4. Samples: 411936. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:01:48,840][03043] Avg episode reward: [(0, '9.542')]
[2025-04-29 03:01:53,852][03043] Fps is (10 sec: 3691.2, 60 sec: 3413.1, 300 sec: 3401.7). Total num frames: 1667072. Throughput: 0: 857.5. Samples: 417504. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:01:53,854][03043] Avg episode reward: [(0, '10.041')]
[2025-04-29 03:01:58,850][03043] Fps is (10 sec: 3273.3, 60 sec: 3345.8, 300 sec: 3401.9). Total num frames: 1683456. Throughput: 0: 844.2. Samples: 419616. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:01:58,851][03043] Avg episode reward: [(0, '9.343')]
[2025-04-29 03:02:03,846][03043] Fps is (10 sec: 3688.7, 60 sec: 3413.1, 300 sec: 3415.9). Total num frames: 1703936. Throughput: 0: 858.6. Samples: 425024. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:02:03,847][03043] Avg episode reward: [(0, '9.334')]
[2025-04-29 03:02:08,879][03043] Fps is (10 sec: 3675.8, 60 sec: 3411.5, 300 sec: 3415.4). Total num frames: 1720320. Throughput: 0: 856.9. Samples: 430112. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:02:08,881][03043] Avg episode reward: [(0, '10.061')]
[2025-04-29 03:02:13,856][03043] Fps is (10 sec: 3273.3, 60 sec: 3413.4, 300 sec: 3415.7). Total num frames: 1736704. Throughput: 0: 848.6. Samples: 432480. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:02:13,857][03043] Avg episode reward: [(0, '11.418')]
[2025-04-29 03:02:13,890][03043] Saving new best policy, reward=11.418!
[2025-04-29 03:02:18,846][03043] Fps is (10 sec: 3287.6, 60 sec: 3414.2, 300 sec: 3416.1). Total num frames: 1753088. Throughput: 0: 861.2. Samples: 437824. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:02:18,847][03043] Avg episode reward: [(0, '12.380')]
[2025-04-29 03:02:18,890][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000428_1753088.pth...
[2025-04-29 03:02:18,937][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000328_1343488.pth
[2025-04-29 03:02:18,944][03043] Saving new best policy, reward=12.380!
[2025-04-29 03:02:23,845][03043] Fps is (10 sec: 3280.6, 60 sec: 3413.3, 300 sec: 3415.8). Total num frames: 1769472. Throughput: 0: 845.9. Samples: 442528. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:02:23,846][03043] Avg episode reward: [(0, '11.608')]
[2025-04-29 03:02:28,865][03043] Fps is (10 sec: 3270.7, 60 sec: 3413.5, 300 sec: 3401.7). Total num frames: 1785856. Throughput: 0: 850.5. Samples: 445216. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:02:28,866][03043] Avg episode reward: [(0, '9.621')]
[2025-04-29 03:02:33,852][03043] Fps is (10 sec: 3274.6, 60 sec: 3413.2, 300 sec: 3415.7). Total num frames: 1802240. Throughput: 0: 859.5. Samples: 450624. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:02:33,853][03043] Avg episode reward: [(0, '8.909')]
[2025-04-29 03:02:38,839][03043] Fps is (10 sec: 3695.9, 60 sec: 3414.8, 300 sec: 3415.9). Total num frames: 1822720. Throughput: 0: 847.2. Samples: 455616. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:02:38,840][03043] Avg episode reward: [(0, '9.000')]
[2025-04-29 03:02:43,840][03043] Fps is (10 sec: 3690.7, 60 sec: 3483.1, 300 sec: 3415.9). Total num frames: 1839104. Throughput: 0: 858.5. Samples: 458240. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:02:43,842][03043] Avg episode reward: [(0, '9.770')]
[2025-04-29 03:02:48,863][03043] Fps is (10 sec: 3269.0, 60 sec: 3412.0, 300 sec: 3415.5). Total num frames: 1855488. Throughput: 0: 842.3. Samples: 462944. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:02:48,864][03043] Avg episode reward: [(0, '11.682')]
[2025-04-29 03:02:53,850][03043] Fps is (10 sec: 3273.4, 60 sec: 3413.4, 300 sec: 3415.6). Total num frames: 1871872. Throughput: 0: 844.6. Samples: 468096. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:02:53,851][03043] Avg episode reward: [(0, '12.194')]
[2025-04-29 03:02:58,858][03043] Fps is (10 sec: 3278.6, 60 sec: 3412.9, 300 sec: 3415.6). Total num frames: 1888256. Throughput: 0: 850.5. Samples: 470752. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:02:58,862][03043] Avg episode reward: [(0, '13.677')]
[2025-04-29 03:02:58,909][03043] Saving new best policy, reward=13.677!
[2025-04-29 03:03:03,849][03043] Fps is (10 sec: 3277.2, 60 sec: 3344.9, 300 sec: 3416.3). Total num frames: 1904640. Throughput: 0: 837.6. Samples: 475520. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:03:03,850][03043] Avg episode reward: [(0, '13.791')]
[2025-04-29 03:03:03,889][03043] Saving new best policy, reward=13.791!
[2025-04-29 03:03:08,841][03043] Fps is (10 sec: 3282.2, 60 sec: 3347.2, 300 sec: 3402.0). Total num frames: 1921024. Throughput: 0: 854.8. Samples: 480992. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:03:08,842][03043] Avg episode reward: [(0, '13.098')]
[2025-04-29 03:03:13,847][03043] Fps is (10 sec: 3277.6, 60 sec: 3345.6, 300 sec: 3401.7). Total num frames: 1937408. Throughput: 0: 850.8. Samples: 483488. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:03:13,848][03043] Avg episode reward: [(0, '13.453')]
[2025-04-29 03:03:18,860][03043] Fps is (10 sec: 3679.2, 60 sec: 3412.5, 300 sec: 3415.7). Total num frames: 1957888. Throughput: 0: 841.8. Samples: 488512. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:03:18,862][03043] Avg episode reward: [(0, '12.426')]
[2025-04-29 03:03:18,867][03043] Process: main process 3043 has queue size: 11
[2025-04-29 03:03:18,904][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000478_1957888.pth...
[2025-04-29 03:03:18,956][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000378_1548288.pth
[2025-04-29 03:03:23,854][03043] Fps is (10 sec: 3683.6, 60 sec: 3412.8, 300 sec: 3415.8). Total num frames: 1974272. Throughput: 0: 850.2. Samples: 493888. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:03:23,857][03043] Avg episode reward: [(0, '12.699')]
[2025-04-29 03:03:28,847][03043] Fps is (10 sec: 3281.1, 60 sec: 3414.3, 300 sec: 3415.7). Total num frames: 1990656. Throughput: 0: 839.7. Samples: 496032. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:03:28,849][03043] Avg episode reward: [(0, '12.058')]
[2025-04-29 03:03:33,837][03043] Fps is (10 sec: 3282.3, 60 sec: 3414.1, 300 sec: 3402.1). Total num frames: 2007040. Throughput: 0: 856.7. Samples: 501472. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:03:33,838][03043] Avg episode reward: [(0, '13.889')]
[2025-04-29 03:03:33,874][03043] Saving new best policy, reward=13.889!
[2025-04-29 03:03:38,874][03043] Fps is (10 sec: 3268.1, 60 sec: 3343.1, 300 sec: 3415.3). Total num frames: 2023424. Throughput: 0: 852.9. Samples: 506496. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:03:38,884][03043] Avg episode reward: [(0, '14.042')]
[2025-04-29 03:03:38,895][03043] Saving new best policy, reward=14.042!
[2025-04-29 03:03:43,846][03043] Fps is (10 sec: 3274.0, 60 sec: 3344.7, 300 sec: 3402.0). Total num frames: 2039808. Throughput: 0: 850.0. Samples: 508992. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:03:43,847][03043] Avg episode reward: [(0, '14.182')]
[2025-04-29 03:03:43,887][03043] Saving new best policy, reward=14.182!
[2025-04-29 03:03:48,840][03043] Fps is (10 sec: 3698.9, 60 sec: 3414.6, 300 sec: 3416.0). Total num frames: 2060288. Throughput: 0: 859.9. Samples: 514208. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:03:48,841][03043] Avg episode reward: [(0, '14.764')]
[2025-04-29 03:03:48,880][03043] Saving new best policy, reward=14.764!
[2025-04-29 03:03:53,869][03043] Fps is (10 sec: 3677.9, 60 sec: 3412.3, 300 sec: 3415.6). Total num frames: 2076672. Throughput: 0: 847.1. Samples: 519136. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:03:53,870][03043] Avg episode reward: [(0, '14.567')]
[2025-04-29 03:03:58,864][03043] Fps is (10 sec: 3268.9, 60 sec: 3412.9, 300 sec: 3415.6). Total num frames: 2093056. Throughput: 0: 850.9. Samples: 521792. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:03:58,865][03043] Avg episode reward: [(0, '13.629')]
[2025-04-29 03:04:03,857][03043] Fps is (10 sec: 3280.9, 60 sec: 3412.9, 300 sec: 3415.9). Total num frames: 2109440. Throughput: 0: 859.8. Samples: 527200. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:04:03,858][03043] Avg episode reward: [(0, '14.348')]
[2025-04-29 03:04:08,841][03043] Fps is (10 sec: 3284.5, 60 sec: 3413.3, 300 sec: 3402.0). Total num frames: 2125824. Throughput: 0: 849.3. Samples: 532096. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:04:08,842][03043] Avg episode reward: [(0, '15.069')]
[2025-04-29 03:04:08,881][03043] Saving new best policy, reward=15.069!
[2025-04-29 03:04:13,854][03043] Fps is (10 sec: 3687.5, 60 sec: 3481.2, 300 sec: 3415.6). Total num frames: 2146304. Throughput: 0: 858.9. Samples: 534688. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:04:13,855][03043] Avg episode reward: [(0, '15.306')]
[2025-04-29 03:04:13,890][03043] Saving new best policy, reward=15.306!
[2025-04-29 03:04:18,866][03043] Fps is (10 sec: 3268.7, 60 sec: 3344.8, 300 sec: 3401.7). Total num frames: 2158592. Throughput: 0: 847.8. Samples: 539648. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:04:18,867][03043] Avg episode reward: [(0, '14.473')]
[2025-04-29 03:04:18,913][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000527_2158592.pth...
[2025-04-29 03:04:18,967][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000428_1753088.pth
[2025-04-29 03:04:23,839][03043] Fps is (10 sec: 3281.7, 60 sec: 3414.2, 300 sec: 3415.8). Total num frames: 2179072. Throughput: 0: 853.3. Samples: 544864. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:04:23,840][03043] Avg episode reward: [(0, '14.503')]
[2025-04-29 03:04:28,842][03043] Fps is (10 sec: 3695.2, 60 sec: 3413.6, 300 sec: 3415.7). Total num frames: 2195456. Throughput: 0: 856.3. Samples: 547520. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:04:28,847][03043] Avg episode reward: [(0, '14.904')]
[2025-04-29 03:04:33,842][03043] Fps is (10 sec: 3275.8, 60 sec: 3413.1, 300 sec: 3415.8). Total num frames: 2211840. Throughput: 0: 851.2. Samples: 552512. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:04:33,843][03043] Avg episode reward: [(0, '15.372')]
[2025-04-29 03:04:33,878][03043] Saving new best policy, reward=15.372!
[2025-04-29 03:04:38,850][03043] Fps is (10 sec: 3683.4, 60 sec: 3483.0, 300 sec: 3415.7). Total num frames: 2232320. Throughput: 0: 868.6. Samples: 558208. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:04:38,851][03043] Avg episode reward: [(0, '15.161')]
[2025-04-29 03:04:43,872][03043] Fps is (10 sec: 3675.3, 60 sec: 3480.1, 300 sec: 3415.9). Total num frames: 2248704. Throughput: 0: 871.7. Samples: 561024. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:04:43,874][03043] Avg episode reward: [(0, '15.448')]
[2025-04-29 03:04:43,917][03043] Saving new best policy, reward=15.448!
[2025-04-29 03:04:48,910][03043] Fps is (10 sec: 3664.4, 60 sec: 3477.6, 300 sec: 3428.8). Total num frames: 2269184. Throughput: 0: 864.4. Samples: 566144. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:04:48,911][03043] Avg episode reward: [(0, '14.818')]
[2025-04-29 03:04:53,851][03043] Fps is (10 sec: 3694.2, 60 sec: 3482.7, 300 sec: 3429.6). Total num frames: 2285568. Throughput: 0: 884.4. Samples: 571904. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:04:53,852][03043] Avg episode reward: [(0, '14.523')]
[2025-04-29 03:04:58,855][03043] Fps is (10 sec: 3294.9, 60 sec: 3482.1, 300 sec: 3429.6). Total num frames: 2301952. Throughput: 0: 879.6. Samples: 574272. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:04:58,856][03043] Avg episode reward: [(0, '14.675')]
[2025-04-29 03:05:03,859][03043] Fps is (10 sec: 3683.5, 60 sec: 3549.7, 300 sec: 3429.6). Total num frames: 2322432. Throughput: 0: 894.0. Samples: 579872. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:05:03,860][03043] Avg episode reward: [(0, '15.123')]
[2025-04-29 03:05:08,871][03043] Fps is (10 sec: 3680.4, 60 sec: 3548.1, 300 sec: 3443.1). Total num frames: 2338816. Throughput: 0: 896.8. Samples: 585248. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:05:08,873][03043] Avg episode reward: [(0, '16.302')]
[2025-04-29 03:05:08,885][03043] Saving new best policy, reward=16.302!
[2025-04-29 03:05:13,859][03043] Fps is (10 sec: 3686.2, 60 sec: 3549.5, 300 sec: 3443.1). Total num frames: 2359296. Throughput: 0: 895.7. Samples: 587840. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:05:13,860][03043] Avg episode reward: [(0, '17.592')]
[2025-04-29 03:05:13,897][03043] Saving new best policy, reward=17.592!
[2025-04-29 03:05:18,842][03043] Fps is (10 sec: 3697.2, 60 sec: 3619.6, 300 sec: 3443.4). Total num frames: 2375680. Throughput: 0: 910.2. Samples: 593472. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:05:18,843][03043] Avg episode reward: [(0, '18.513')]
[2025-04-29 03:05:18,882][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000580_2375680.pth...
[2025-04-29 03:05:18,930][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000478_1957888.pth
[2025-04-29 03:05:18,937][03043] Saving new best policy, reward=18.513!
[2025-04-29 03:05:23,856][03043] Fps is (10 sec: 3277.9, 60 sec: 3548.8, 300 sec: 3443.5). Total num frames: 2392064. Throughput: 0: 893.7. Samples: 598432. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:05:23,857][03043] Avg episode reward: [(0, '18.903')]
[2025-04-29 03:05:23,890][03043] Saving new best policy, reward=18.903!
[2025-04-29 03:05:28,853][03043] Fps is (10 sec: 3682.2, 60 sec: 3617.4, 300 sec: 3443.5). Total num frames: 2412544. Throughput: 0: 892.8. Samples: 601184. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:05:28,854][03043] Avg episode reward: [(0, '15.157')]
[2025-04-29 03:05:33,859][03043] Fps is (10 sec: 3685.2, 60 sec: 3617.1, 300 sec: 3444.3). Total num frames: 2428928. Throughput: 0: 908.4. Samples: 606976. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:05:33,861][03043] Avg episode reward: [(0, '12.153')]
[2025-04-29 03:05:38,913][03043] Fps is (10 sec: 3664.5, 60 sec: 3614.3, 300 sec: 3456.5). Total num frames: 2449408. Throughput: 0: 892.6. Samples: 612128. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:05:38,914][03043] Avg episode reward: [(0, '11.224')]
[2025-04-29 03:05:43,853][03043] Fps is (10 sec: 3688.8, 60 sec: 3619.3, 300 sec: 3457.4). Total num frames: 2465792. Throughput: 0: 902.4. Samples: 614880. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:05:43,854][03043] Avg episode reward: [(0, '11.951')]
[2025-04-29 03:05:48,856][03043] Fps is (10 sec: 3295.8, 60 sec: 3553.1, 300 sec: 3457.2). Total num frames: 2482176. Throughput: 0: 888.9. Samples: 619872. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:05:48,857][03043] Avg episode reward: [(0, '12.676')]
[2025-04-29 03:05:53,860][03043] Fps is (10 sec: 3274.6, 60 sec: 3549.3, 300 sec: 3443.5). Total num frames: 2498560. Throughput: 0: 891.3. Samples: 625344. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:05:53,861][03043] Avg episode reward: [(0, '14.347')]
[2025-04-29 03:05:58,844][03043] Fps is (10 sec: 3690.7, 60 sec: 3618.8, 300 sec: 3457.3). Total num frames: 2519040. Throughput: 0: 892.8. Samples: 628000. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:05:58,847][03043] Avg episode reward: [(0, '16.644')]
[2025-04-29 03:06:03,863][03043] Fps is (10 sec: 3685.2, 60 sec: 3549.6, 300 sec: 3457.1). Total num frames: 2535424. Throughput: 0: 875.7. Samples: 632896. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:06:03,864][03043] Avg episode reward: [(0, '17.498')]
[2025-04-29 03:06:08,842][03043] Fps is (10 sec: 3277.3, 60 sec: 3551.6, 300 sec: 3457.5). Total num frames: 2551808. Throughput: 0: 887.7. Samples: 638368. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:06:08,843][03043] Avg episode reward: [(0, '17.798')]
[2025-04-29 03:06:13,843][03043] Fps is (10 sec: 3283.1, 60 sec: 3482.5, 300 sec: 3457.5). Total num frames: 2568192. Throughput: 0: 884.1. Samples: 640960. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:06:13,845][03043] Avg episode reward: [(0, '17.974')]
[2025-04-29 03:06:18,843][03043] Fps is (10 sec: 3276.8, 60 sec: 3481.6, 300 sec: 3457.3). Total num frames: 2584576. Throughput: 0: 866.5. Samples: 645952. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:06:18,844][03043] Avg episode reward: [(0, '18.224')]
[2025-04-29 03:06:18,885][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000631_2584576.pth...
[2025-04-29 03:06:18,953][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000527_2158592.pth
[2025-04-29 03:06:23,845][03043] Fps is (10 sec: 3685.8, 60 sec: 3550.5, 300 sec: 3471.4). Total num frames: 2605056. Throughput: 0: 872.4. Samples: 651328. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:06:23,846][03043] Avg episode reward: [(0, '18.257')]
[2025-04-29 03:06:28,859][03043] Fps is (10 sec: 3680.3, 60 sec: 3481.3, 300 sec: 3471.1). Total num frames: 2621440. Throughput: 0: 858.2. Samples: 653504. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:06:28,860][03043] Avg episode reward: [(0, '18.267')]
[2025-04-29 03:06:33,837][03043] Fps is (10 sec: 3279.5, 60 sec: 3482.9, 300 sec: 3457.6). Total num frames: 2637824. Throughput: 0: 865.8. Samples: 658816. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:06:33,838][03043] Avg episode reward: [(0, '18.291')]
[2025-04-29 03:06:38,878][03043] Fps is (10 sec: 3270.5, 60 sec: 3415.3, 300 sec: 3471.0). Total num frames: 2654208. Throughput: 0: 859.4. Samples: 664032. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:06:38,880][03043] Avg episode reward: [(0, '17.604')]
[2025-04-29 03:06:43,868][03043] Fps is (10 sec: 3266.6, 60 sec: 3412.5, 300 sec: 3457.0). Total num frames: 2670592. Throughput: 0: 852.9. Samples: 666400. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:06:43,870][03043] Avg episode reward: [(0, '16.722')]
[2025-04-29 03:06:48,867][03043] Fps is (10 sec: 3690.5, 60 sec: 3480.9, 300 sec: 3471.0). Total num frames: 2691072. Throughput: 0: 864.6. Samples: 671808. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:06:48,868][03043] Avg episode reward: [(0, '16.047')]
[2025-04-29 03:06:53,868][03043] Fps is (10 sec: 3686.7, 60 sec: 3481.1, 300 sec: 3471.0). Total num frames: 2707456. Throughput: 0: 852.1. Samples: 676736. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:06:53,870][03043] Avg episode reward: [(0, '15.688')]
[2025-04-29 03:06:58,854][03043] Fps is (10 sec: 3281.0, 60 sec: 3412.7, 300 sec: 3457.2). Total num frames: 2723840. Throughput: 0: 851.7. Samples: 679296. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:06:58,855][03043] Avg episode reward: [(0, '16.405')]
[2025-04-29 03:07:03,866][03043] Fps is (10 sec: 3277.3, 60 sec: 3413.1, 300 sec: 3457.5). Total num frames: 2740224. Throughput: 0: 862.8. Samples: 684800. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:07:03,870][03043] Avg episode reward: [(0, '16.935')]
[2025-04-29 03:07:08,848][03043] Fps is (10 sec: 3278.8, 60 sec: 3413.0, 300 sec: 3457.4). Total num frames: 2756608. Throughput: 0: 852.6. Samples: 689696. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:07:08,849][03043] Avg episode reward: [(0, '17.851')]
[2025-04-29 03:07:13,845][03043] Fps is (10 sec: 3694.2, 60 sec: 3481.5, 300 sec: 3471.2). Total num frames: 2777088. Throughput: 0: 866.4. Samples: 692480. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:07:13,846][03043] Avg episode reward: [(0, '19.030')]
[2025-04-29 03:07:13,882][03043] Saving new best policy, reward=19.030!
[2025-04-29 03:07:18,840][03043] Fps is (10 sec: 3689.5, 60 sec: 3481.7, 300 sec: 3471.2). Total num frames: 2793472. Throughput: 0: 866.8. Samples: 697824. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:07:18,841][03043] Avg episode reward: [(0, '19.341')]
[2025-04-29 03:07:18,879][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000682_2793472.pth...
[2025-04-29 03:07:18,931][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000580_2375680.pth
[2025-04-29 03:07:18,938][03043] Saving new best policy, reward=19.341!
[2025-04-29 03:07:23,910][03043] Fps is (10 sec: 3662.4, 60 sec: 3477.8, 300 sec: 3484.5). Total num frames: 2813952. Throughput: 0: 871.9. Samples: 703296. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:07:23,913][03043] Avg episode reward: [(0, '17.854')]
[2025-04-29 03:07:28,865][03043] Fps is (10 sec: 3677.3, 60 sec: 3481.3, 300 sec: 3484.9). Total num frames: 2830336. Throughput: 0: 884.0. Samples: 706176. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:07:28,866][03043] Avg episode reward: [(0, '17.018')]
[2025-04-29 03:07:33,860][03043] Fps is (10 sec: 3293.5, 60 sec: 3480.3, 300 sec: 3470.9). Total num frames: 2846720. Throughput: 0: 876.9. Samples: 711264. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:07:33,861][03043] Avg episode reward: [(0, '16.756')]
[2025-04-29 03:07:38,863][03043] Fps is (10 sec: 3687.0, 60 sec: 3550.8, 300 sec: 3484.8). Total num frames: 2867200. Throughput: 0: 896.8. Samples: 717088. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:07:38,864][03043] Avg episode reward: [(0, '16.225')]
[2025-04-29 03:07:43,855][03043] Fps is (10 sec: 3688.0, 60 sec: 3550.7, 300 sec: 3485.2). Total num frames: 2883584. Throughput: 0: 903.1. Samples: 719936. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:07:43,859][03043] Avg episode reward: [(0, '15.628')]
[2025-04-29 03:07:48,870][03043] Fps is (10 sec: 3684.0, 60 sec: 3549.7, 300 sec: 3498.7). Total num frames: 2904064. Throughput: 0: 891.7. Samples: 724928. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:07:48,872][03043] Avg episode reward: [(0, '17.970')]
[2025-04-29 03:07:53,853][03043] Fps is (10 sec: 3687.2, 60 sec: 3550.7, 300 sec: 3499.0). Total num frames: 2920448. Throughput: 0: 903.0. Samples: 730336. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:07:53,854][03043] Avg episode reward: [(0, '18.744')]
[2025-04-29 03:07:58,844][03043] Fps is (10 sec: 3285.2, 60 sec: 3550.5, 300 sec: 3499.0). Total num frames: 2936832. Throughput: 0: 889.6. Samples: 732512. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:07:58,845][03043] Avg episode reward: [(0, '18.064')]
[2025-04-29 03:08:03,846][03043] Fps is (10 sec: 3279.3, 60 sec: 3551.1, 300 sec: 3498.9). Total num frames: 2953216. Throughput: 0: 885.9. Samples: 737696. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:08:03,847][03043] Avg episode reward: [(0, '17.750')]
[2025-04-29 03:08:08,861][03043] Fps is (10 sec: 3271.3, 60 sec: 3549.1, 300 sec: 3498.8). Total num frames: 2969600. Throughput: 0: 875.6. Samples: 742656. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:08:08,864][03043] Avg episode reward: [(0, '16.744')]
[2025-04-29 03:08:13,847][03043] Fps is (10 sec: 3276.2, 60 sec: 3481.5, 300 sec: 3485.2). Total num frames: 2985984. Throughput: 0: 865.0. Samples: 745088. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:08:13,849][03043] Avg episode reward: [(0, '14.861')]
[2025-04-29 03:08:18,863][03043] Fps is (10 sec: 3685.6, 60 sec: 3548.5, 300 sec: 3498.8). Total num frames: 3006464. Throughput: 0: 874.6. Samples: 750624. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:08:18,864][03043] Avg episode reward: [(0, '14.500')]
[2025-04-29 03:08:18,904][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000734_3006464.pth...
[2025-04-29 03:08:18,958][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000631_2584576.pth
[2025-04-29 03:08:23,844][03043] Fps is (10 sec: 3278.0, 60 sec: 3417.1, 300 sec: 3485.1). Total num frames: 3018752. Throughput: 0: 851.6. Samples: 755392. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:08:23,845][03043] Avg episode reward: [(0, '14.410')]
[2025-04-29 03:08:28,870][03043] Fps is (10 sec: 3274.6, 60 sec: 3481.3, 300 sec: 3498.6). Total num frames: 3039232. Throughput: 0: 848.8. Samples: 758144. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:08:28,871][03043] Avg episode reward: [(0, '15.669')]
[2025-04-29 03:08:33,849][03043] Fps is (10 sec: 3684.5, 60 sec: 3482.2, 300 sec: 3499.3). Total num frames: 3055616. Throughput: 0: 860.1. Samples: 763616. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:08:33,853][03043] Avg episode reward: [(0, '17.694')]
[2025-04-29 03:08:38,843][03043] Fps is (10 sec: 3285.8, 60 sec: 3414.5, 300 sec: 3499.0). Total num frames: 3072000. Throughput: 0: 847.8. Samples: 768480. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:08:38,843][03043] Avg episode reward: [(0, '18.356')]
[2025-04-29 03:08:43,845][03043] Fps is (10 sec: 3687.8, 60 sec: 3482.2, 300 sec: 3498.9). Total num frames: 3092480. Throughput: 0: 861.1. Samples: 771264. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:08:43,846][03043] Avg episode reward: [(0, '17.581')]
[2025-04-29 03:08:48,863][03043] Fps is (10 sec: 3270.0, 60 sec: 3345.4, 300 sec: 3485.1). Total num frames: 3104768. Throughput: 0: 856.5. Samples: 776256. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:08:48,865][03043] Avg episode reward: [(0, '16.730')]
[2025-04-29 03:08:53,846][03043] Fps is (10 sec: 3276.5, 60 sec: 3413.7, 300 sec: 3499.2). Total num frames: 3125248. Throughput: 0: 862.9. Samples: 781472. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:08:53,847][03043] Avg episode reward: [(0, '15.672')]
[2025-04-29 03:08:58,850][03043] Fps is (10 sec: 3691.2, 60 sec: 3413.0, 300 sec: 3499.0). Total num frames: 3141632. Throughput: 0: 870.3. Samples: 784256. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:08:58,856][03043] Avg episode reward: [(0, '13.466')]
[2025-04-29 03:09:03,846][03043] Fps is (10 sec: 3276.7, 60 sec: 3413.3, 300 sec: 3498.9). Total num frames: 3158016. Throughput: 0: 852.9. Samples: 788992. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:09:03,847][03043] Avg episode reward: [(0, '14.522')]
[2025-04-29 03:09:08,853][03043] Fps is (10 sec: 3685.6, 60 sec: 3482.1, 300 sec: 3499.0). Total num frames: 3178496. Throughput: 0: 870.2. Samples: 794560. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:09:08,854][03043] Avg episode reward: [(0, '15.452')]
[2025-04-29 03:09:13,875][03043] Fps is (10 sec: 3267.4, 60 sec: 3411.8, 300 sec: 3498.8). Total num frames: 3190784. Throughput: 0: 865.3. Samples: 797088. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:09:13,878][03043] Avg episode reward: [(0, '16.214')]
[2025-04-29 03:09:18,852][03043] Fps is (10 sec: 3276.9, 60 sec: 3414.0, 300 sec: 3498.8). Total num frames: 3211264. Throughput: 0: 854.7. Samples: 802080. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:09:18,853][03043] Avg episode reward: [(0, '16.432')]
[2025-04-29 03:09:18,891][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000784_3211264.pth...
[2025-04-29 03:09:18,940][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000682_2793472.pth
[2025-04-29 03:09:23,864][03043] Fps is (10 sec: 3690.6, 60 sec: 3480.5, 300 sec: 3498.7). Total num frames: 3227648. Throughput: 0: 862.9. Samples: 807328. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:09:23,865][03043] Avg episode reward: [(0, '17.005')]
[2025-04-29 03:09:28,847][03043] Fps is (10 sec: 3278.4, 60 sec: 3414.6, 300 sec: 3498.9). Total num frames: 3244032. Throughput: 0: 852.6. Samples: 809632. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:09:28,848][03043] Avg episode reward: [(0, '17.641')]
[2025-04-29 03:09:33,862][03043] Fps is (10 sec: 3277.4, 60 sec: 3412.6, 300 sec: 3484.9). Total num frames: 3260416. Throughput: 0: 859.1. Samples: 814912. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:09:33,863][03043] Avg episode reward: [(0, '17.715')]
[2025-04-29 03:09:38,876][03043] Fps is (10 sec: 3267.6, 60 sec: 3411.5, 300 sec: 3485.0). Total num frames: 3276800. Throughput: 0: 856.3. Samples: 820032. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:09:38,877][03043] Avg episode reward: [(0, '18.495')]
[2025-04-29 03:09:43,850][03043] Fps is (10 sec: 3690.9, 60 sec: 3413.1, 300 sec: 3485.8). Total num frames: 3297280. Throughput: 0: 850.5. Samples: 822528. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:09:43,851][03043] Avg episode reward: [(0, '18.740')]
[2025-04-29 03:09:48,860][03043] Fps is (10 sec: 3692.2, 60 sec: 3481.8, 300 sec: 3485.0). Total num frames: 3313664. Throughput: 0: 863.0. Samples: 827840. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:09:48,861][03043] Avg episode reward: [(0, '19.994')]
[2025-04-29 03:09:48,899][03043] Saving new best policy, reward=19.994!
[2025-04-29 03:09:53,852][03043] Fps is (10 sec: 3276.2, 60 sec: 3413.0, 300 sec: 3485.1). Total num frames: 3330048. Throughput: 0: 845.5. Samples: 832608. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:09:53,852][03043] Avg episode reward: [(0, '21.312')]
[2025-04-29 03:09:53,889][03043] Saving new best policy, reward=21.312!
[2025-04-29 03:09:58,845][03043] Fps is (10 sec: 3281.6, 60 sec: 3413.6, 300 sec: 3471.3). Total num frames: 3346432. Throughput: 0: 853.2. Samples: 835456. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:09:58,847][03043] Avg episode reward: [(0, '19.786')]
[2025-04-29 03:10:03,852][03043] Fps is (10 sec: 3686.2, 60 sec: 3481.3, 300 sec: 3485.3). Total num frames: 3366912. Throughput: 0: 863.3. Samples: 840928. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:10:03,853][03043] Avg episode reward: [(0, '19.851')]
[2025-04-29 03:10:08,841][03043] Fps is (10 sec: 3688.0, 60 sec: 3414.0, 300 sec: 3471.4). Total num frames: 3383296. Throughput: 0: 857.3. Samples: 845888. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:10:08,842][03043] Avg episode reward: [(0, '19.635')]
[2025-04-29 03:10:13,865][03043] Fps is (10 sec: 3272.7, 60 sec: 3482.2, 300 sec: 3470.9). Total num frames: 3399680. Throughput: 0: 865.1. Samples: 848576. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:10:13,866][03043] Avg episode reward: [(0, '18.983')]
[2025-04-29 03:10:18,854][03043] Fps is (10 sec: 3272.7, 60 sec: 3413.3, 300 sec: 3471.2). Total num frames: 3416064. Throughput: 0: 857.8. Samples: 853504. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:10:18,855][03043] Avg episode reward: [(0, '19.776')]
[2025-04-29 03:10:18,897][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000834_3416064.pth...
[2025-04-29 03:10:18,951][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000734_3006464.pth
[2025-04-29 03:10:23,837][03043] Fps is (10 sec: 3285.9, 60 sec: 3414.9, 300 sec: 3457.5). Total num frames: 3432448. Throughput: 0: 860.5. Samples: 858720. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:10:23,838][03043] Avg episode reward: [(0, '19.773')]
[2025-04-29 03:10:28,866][03043] Fps is (10 sec: 3682.0, 60 sec: 3480.5, 300 sec: 3471.1). Total num frames: 3452928. Throughput: 0: 863.0. Samples: 861376. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:10:28,867][03043] Avg episode reward: [(0, '21.019')]
[2025-04-29 03:10:33,872][03043] Fps is (10 sec: 3673.4, 60 sec: 3481.0, 300 sec: 3457.8). Total num frames: 3469312. Throughput: 0: 853.8. Samples: 866272. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:10:33,874][03043] Avg episode reward: [(0, '20.766')]
[2025-04-29 03:10:38,839][03043] Fps is (10 sec: 3285.6, 60 sec: 3483.7, 300 sec: 3457.5). Total num frames: 3485696. Throughput: 0: 868.5. Samples: 871680. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:10:38,840][03043] Avg episode reward: [(0, '21.736')]
[2025-04-29 03:10:38,880][03043] Saving new best policy, reward=21.736!
[2025-04-29 03:10:43,872][03043] Fps is (10 sec: 3276.8, 60 sec: 3412.1, 300 sec: 3457.1). Total num frames: 3502080. Throughput: 0: 862.8. Samples: 874304. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:10:43,876][03043] Avg episode reward: [(0, '21.873')]
[2025-04-29 03:10:43,925][03043] Saving new best policy, reward=21.873!
[2025-04-29 03:10:48,849][03043] Fps is (10 sec: 3273.5, 60 sec: 3414.0, 300 sec: 3457.4). Total num frames: 3518464. Throughput: 0: 848.4. Samples: 879104. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:10:48,850][03043] Avg episode reward: [(0, '21.361')]
[2025-04-29 03:10:53,864][03043] Fps is (10 sec: 3279.5, 60 sec: 3412.6, 300 sec: 3443.2). Total num frames: 3534848. Throughput: 0: 857.9. Samples: 884512. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:10:53,865][03043] Avg episode reward: [(0, '22.224')]
[2025-04-29 03:10:53,959][03043] Saving new best policy, reward=22.224!
[2025-04-29 03:10:58,863][03043] Fps is (10 sec: 3272.1, 60 sec: 3412.3, 300 sec: 3443.4). Total num frames: 3551232. Throughput: 0: 847.0. Samples: 886688. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:10:58,864][03043] Avg episode reward: [(0, '21.965')]
[2025-04-29 03:11:03,840][03043] Fps is (10 sec: 3695.3, 60 sec: 3414.0, 300 sec: 3457.3). Total num frames: 3571712. Throughput: 0: 857.1. Samples: 892064. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:11:03,841][03043] Avg episode reward: [(0, '21.558')]
[2025-04-29 03:11:08,837][03043] Fps is (10 sec: 3696.0, 60 sec: 3413.5, 300 sec: 3457.4). Total num frames: 3588096. Throughput: 0: 852.6. Samples: 897088. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:11:08,839][03043] Avg episode reward: [(0, '21.412')]
[2025-04-29 03:11:13,842][03043] Fps is (10 sec: 3276.1, 60 sec: 3414.6, 300 sec: 3457.3). Total num frames: 3604480. Throughput: 0: 850.9. Samples: 899648. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:11:13,843][03043] Avg episode reward: [(0, '22.242')]
[2025-04-29 03:11:13,880][03043] Saving new best policy, reward=22.242!
[2025-04-29 03:11:18,934][03043] Fps is (10 sec: 3245.3, 60 sec: 3408.7, 300 sec: 3442.4). Total num frames: 3620864. Throughput: 0: 862.1. Samples: 905120. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:11:18,936][03043] Avg episode reward: [(0, '19.857')]
[2025-04-29 03:11:18,952][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000885_3624960.pth...
[2025-04-29 03:11:19,000][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000784_3211264.pth
[2025-04-29 03:11:23,865][03043] Fps is (10 sec: 3269.2, 60 sec: 3411.7, 300 sec: 3443.3). Total num frames: 3637248. Throughput: 0: 850.7. Samples: 909984. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:11:23,866][03043] Avg episode reward: [(0, '18.959')]
[2025-04-29 03:11:28,843][03043] Fps is (10 sec: 3720.3, 60 sec: 3414.6, 300 sec: 3457.2). Total num frames: 3657728. Throughput: 0: 850.3. Samples: 912544. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:11:28,844][03043] Avg episode reward: [(0, '19.465')]
[2025-04-29 03:11:33,839][03043] Fps is (10 sec: 3696.1, 60 sec: 3415.2, 300 sec: 3457.8). Total num frames: 3674112. Throughput: 0: 864.2. Samples: 917984. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:11:33,847][03043] Avg episode reward: [(0, '18.804')]
[2025-04-29 03:11:38,857][03043] Fps is (10 sec: 3272.3, 60 sec: 3412.3, 300 sec: 3457.4). Total num frames: 3690496. Throughput: 0: 849.9. Samples: 922752. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:11:38,862][03043] Avg episode reward: [(0, '18.268')]
[2025-04-29 03:11:43,865][03043] Fps is (10 sec: 3268.3, 60 sec: 3413.7, 300 sec: 3443.4). Total num frames: 3706880. Throughput: 0: 860.4. Samples: 925408. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:11:43,866][03043] Avg episode reward: [(0, '19.235')]
[2025-04-29 03:11:48,867][03043] Fps is (10 sec: 3273.6, 60 sec: 3412.3, 300 sec: 3443.4). Total num frames: 3723264. Throughput: 0: 851.4. Samples: 930400. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:11:48,868][03043] Avg episode reward: [(0, '20.179')]
[2025-04-29 03:11:53,862][03043] Fps is (10 sec: 3278.0, 60 sec: 3413.5, 300 sec: 3443.3). Total num frames: 3739648. Throughput: 0: 856.4. Samples: 935648. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:11:53,863][03043] Avg episode reward: [(0, '18.748')]
[2025-04-29 03:11:58,840][03043] Fps is (10 sec: 3696.6, 60 sec: 3483.0, 300 sec: 3457.6). Total num frames: 3760128. Throughput: 0: 857.6. Samples: 938240. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:11:58,841][03043] Avg episode reward: [(0, '18.126')]
[2025-04-29 03:12:03,893][03043] Fps is (10 sec: 3674.9, 60 sec: 3410.3, 300 sec: 3456.8). Total num frames: 3776512. Throughput: 0: 843.4. Samples: 943040. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:12:03,894][03043] Avg episode reward: [(0, '17.384')]
[2025-04-29 03:12:08,855][03043] Fps is (10 sec: 3271.7, 60 sec: 3412.3, 300 sec: 3443.3). Total num frames: 3792896. Throughput: 0: 855.7. Samples: 948480. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:12:08,856][03043] Avg episode reward: [(0, '16.848')]
[2025-04-29 03:12:13,850][03043] Fps is (10 sec: 3290.9, 60 sec: 3412.9, 300 sec: 3443.3). Total num frames: 3809280. Throughput: 0: 857.5. Samples: 951136. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:12:13,852][03043] Avg episode reward: [(0, '16.980')]
[2025-04-29 03:12:18,865][03043] Fps is (10 sec: 3273.7, 60 sec: 3417.3, 300 sec: 3430.1). Total num frames: 3825664. Throughput: 0: 844.3. Samples: 956000. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:12:18,866][03043] Avg episode reward: [(0, '18.963')]
[2025-04-29 03:12:18,876][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000934_3825664.pth...
[2025-04-29 03:12:18,925][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000834_3416064.pth
[2025-04-29 03:12:23,841][03043] Fps is (10 sec: 3279.9, 60 sec: 3414.7, 300 sec: 3429.8). Total num frames: 3842048. Throughput: 0: 856.5. Samples: 961280. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:12:23,842][03043] Avg episode reward: [(0, '19.760')]
[2025-04-29 03:12:28,866][03043] Fps is (10 sec: 3276.2, 60 sec: 3343.8, 300 sec: 3429.5). Total num frames: 3858432. Throughput: 0: 847.6. Samples: 963552. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:12:28,867][03043] Avg episode reward: [(0, '20.397')]
[2025-04-29 03:12:33,865][03043] Fps is (10 sec: 3677.5, 60 sec: 3411.9, 300 sec: 3429.5). Total num frames: 3878912. Throughput: 0: 853.4. Samples: 968800. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:12:33,866][03043] Avg episode reward: [(0, '20.135')]
[2025-04-29 03:12:38,849][03043] Fps is (10 sec: 3692.7, 60 sec: 3413.8, 300 sec: 3429.6). Total num frames: 3895296. Throughput: 0: 855.0. Samples: 974112. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:12:38,854][03043] Avg episode reward: [(0, '20.268')]
[2025-04-29 03:12:43,839][03043] Fps is (10 sec: 3285.2, 60 sec: 3414.8, 300 sec: 3416.0). Total num frames: 3911680. Throughput: 0: 855.5. Samples: 976736. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:12:43,840][03043] Avg episode reward: [(0, '19.507')]
[2025-04-29 03:12:48,858][03043] Fps is (10 sec: 3683.1, 60 sec: 3482.1, 300 sec: 3429.5). Total num frames: 3932160. Throughput: 0: 877.5. Samples: 982496. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:12:48,859][03043] Avg episode reward: [(0, '18.906')]
[2025-04-29 03:12:53,836][03043] Fps is (10 sec: 3687.7, 60 sec: 3483.1, 300 sec: 3429.6). Total num frames: 3948544. Throughput: 0: 871.5. Samples: 987680. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:12:53,837][03043] Avg episode reward: [(0, '19.240')]
[2025-04-29 03:12:58,848][03043] Fps is (10 sec: 3690.3, 60 sec: 3481.1, 300 sec: 3443.4). Total num frames: 3969024. Throughput: 0: 875.4. Samples: 990528. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:12:58,849][03043] Avg episode reward: [(0, '21.446')]
[2025-04-29 03:13:03,869][03043] Fps is (10 sec: 3674.3, 60 sec: 3483.0, 300 sec: 3443.3). Total num frames: 3985408. Throughput: 0: 895.2. Samples: 996288. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:13:03,870][03043] Avg episode reward: [(0, '23.163')]
[2025-04-29 03:13:03,915][03043] Saving new best policy, reward=23.163!
[2025-04-29 03:13:08,863][03043] Fps is (10 sec: 3271.6, 60 sec: 3481.1, 300 sec: 3443.2). Total num frames: 4001792. Throughput: 0: 885.6. Samples: 1001152. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:13:08,864][03043] Avg episode reward: [(0, '23.780')]
[2025-04-29 03:13:08,878][03043] Saving new best policy, reward=23.780!
[2025-04-29 03:13:13,841][03043] Fps is (10 sec: 3696.4, 60 sec: 3550.4, 300 sec: 3443.7). Total num frames: 4022272. Throughput: 0: 895.1. Samples: 1003808. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:13:13,842][03043] Avg episode reward: [(0, '24.047')]
[2025-04-29 03:13:13,881][03043] Saving new best policy, reward=24.047!
[2025-04-29 03:13:18,867][03043] Fps is (10 sec: 3685.1, 60 sec: 3549.7, 300 sec: 3457.0). Total num frames: 4038656. Throughput: 0: 892.4. Samples: 1008960. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:13:18,868][03043] Avg episode reward: [(0, '23.141')]
[2025-04-29 03:13:18,909][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000986_4038656.pth...
[2025-04-29 03:13:18,968][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000885_3624960.pth
[2025-04-29 03:13:23,863][03043] Fps is (10 sec: 3269.7, 60 sec: 3548.5, 300 sec: 3443.5). Total num frames: 4055040. Throughput: 0: 895.7. Samples: 1014432. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:13:23,864][03043] Avg episode reward: [(0, '21.992')]
[2025-04-29 03:13:28,854][03043] Fps is (10 sec: 3691.4, 60 sec: 3618.9, 300 sec: 3457.2). Total num frames: 4075520. Throughput: 0: 901.4. Samples: 1017312. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:13:28,855][03043] Avg episode reward: [(0, '19.970')]
[2025-04-29 03:13:33,859][03043] Fps is (10 sec: 3687.8, 60 sec: 3550.2, 300 sec: 3457.1). Total num frames: 4091904. Throughput: 0: 889.6. Samples: 1022528. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:13:33,860][03043] Avg episode reward: [(0, '19.426')]
[2025-04-29 03:13:38,852][03043] Fps is (10 sec: 3686.8, 60 sec: 3617.9, 300 sec: 3457.2). Total num frames: 4112384. Throughput: 0: 902.1. Samples: 1028288. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:13:38,853][03043] Avg episode reward: [(0, '18.618')]
[2025-04-29 03:13:43,866][03043] Fps is (10 sec: 3684.0, 60 sec: 3616.5, 300 sec: 3471.2). Total num frames: 4128768. Throughput: 0: 901.3. Samples: 1031104. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:13:43,867][03043] Avg episode reward: [(0, '19.045')]
[2025-04-29 03:13:48,864][03043] Fps is (10 sec: 3682.1, 60 sec: 3617.8, 300 sec: 3471.0). Total num frames: 4149248. Throughput: 0: 888.3. Samples: 1036256. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:13:48,865][03043] Avg episode reward: [(0, '19.682')]
[2025-04-29 03:13:53,849][03043] Fps is (10 sec: 3692.6, 60 sec: 3617.3, 300 sec: 3471.2). Total num frames: 4165632. Throughput: 0: 909.1. Samples: 1042048. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:13:53,850][03043] Avg episode reward: [(0, '19.233')]
[2025-04-29 03:13:58,912][03043] Fps is (10 sec: 3668.7, 60 sec: 3614.2, 300 sec: 3484.3). Total num frames: 4186112. Throughput: 0: 903.1. Samples: 1044512. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:13:58,913][03043] Avg episode reward: [(0, '18.692')]
[2025-04-29 03:14:03,854][03043] Fps is (10 sec: 3684.7, 60 sec: 3619.0, 300 sec: 3471.2). Total num frames: 4202496. Throughput: 0: 917.6. Samples: 1050240. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:14:03,855][03043] Avg episode reward: [(0, '18.976')]
[2025-04-29 03:14:08,858][03043] Fps is (10 sec: 3706.6, 60 sec: 3686.8, 300 sec: 3499.2). Total num frames: 4222976. Throughput: 0: 916.7. Samples: 1055680. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:14:08,861][03043] Avg episode reward: [(0, '19.534')]
[2025-04-29 03:14:13,848][03043] Fps is (10 sec: 3688.6, 60 sec: 3617.8, 300 sec: 3485.1). Total num frames: 4239360. Throughput: 0: 908.2. Samples: 1058176. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:14:13,849][03043] Avg episode reward: [(0, '19.446')]
[2025-04-29 03:14:18,856][03043] Fps is (10 sec: 3687.1, 60 sec: 3687.1, 300 sec: 3499.0). Total num frames: 4259840. Throughput: 0: 919.5. Samples: 1063904. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:14:18,857][03043] Avg episode reward: [(0, '19.382')]
[2025-04-29 03:14:18,895][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001040_4259840.pth...
[2025-04-29 03:14:18,945][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000934_3825664.pth
[2025-04-29 03:14:23,856][03043] Fps is (10 sec: 3683.3, 60 sec: 3686.8, 300 sec: 3498.9). Total num frames: 4276224. Throughput: 0: 905.2. Samples: 1069024. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:14:23,857][03043] Avg episode reward: [(0, '18.064')]
[2025-04-29 03:14:28,858][03043] Fps is (10 sec: 3276.2, 60 sec: 3617.9, 300 sec: 3499.0). Total num frames: 4292608. Throughput: 0: 906.8. Samples: 1071904. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:14:28,859][03043] Avg episode reward: [(0, '18.111')]
[2025-04-29 03:14:33,871][03043] Fps is (10 sec: 3680.8, 60 sec: 3685.7, 300 sec: 3512.9). Total num frames: 4313088. Throughput: 0: 919.3. Samples: 1077632. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:14:33,876][03043] Avg episode reward: [(0, '17.152')]
[2025-04-29 03:14:38,843][03043] Fps is (10 sec: 3692.0, 60 sec: 3618.7, 300 sec: 3499.0). Total num frames: 4329472. Throughput: 0: 905.4. Samples: 1082784. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:14:38,844][03043] Avg episode reward: [(0, '17.913')]
[2025-04-29 03:14:43,865][03043] Fps is (10 sec: 3688.8, 60 sec: 3686.5, 300 sec: 3512.8). Total num frames: 4349952. Throughput: 0: 916.2. Samples: 1085696. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:14:43,866][03043] Avg episode reward: [(0, '18.416')]
[2025-04-29 03:14:48,849][03043] Fps is (10 sec: 3683.9, 60 sec: 3619.0, 300 sec: 3512.9). Total num frames: 4366336. Throughput: 0: 907.5. Samples: 1091072. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:14:48,850][03043] Avg episode reward: [(0, '19.061')]
[2025-04-29 03:14:53,862][03043] Fps is (10 sec: 3687.3, 60 sec: 3685.6, 300 sec: 3526.5). Total num frames: 4386816. Throughput: 0: 910.1. Samples: 1096640. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:14:53,863][03043] Avg episode reward: [(0, '20.494')]
[2025-04-29 03:14:58,855][03043] Fps is (10 sec: 3684.4, 60 sec: 3621.6, 300 sec: 3512.8). Total num frames: 4403200. Throughput: 0: 918.6. Samples: 1099520. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:14:58,856][03043] Avg episode reward: [(0, '21.857')]
[2025-04-29 03:15:03,857][03043] Fps is (10 sec: 3278.5, 60 sec: 3617.9, 300 sec: 3512.6). Total num frames: 4419584. Throughput: 0: 906.6. Samples: 1104704. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:15:03,858][03043] Avg episode reward: [(0, '19.388')]
[2025-04-29 03:15:08,850][03043] Fps is (10 sec: 3688.3, 60 sec: 3618.6, 300 sec: 3526.9). Total num frames: 4440064. Throughput: 0: 921.0. Samples: 1110464. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:15:08,851][03043] Avg episode reward: [(0, '20.148')]
[2025-04-29 03:15:13,850][03043] Fps is (10 sec: 3689.1, 60 sec: 3618.0, 300 sec: 3526.8). Total num frames: 4456448. Throughput: 0: 919.6. Samples: 1113280. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:15:13,852][03043] Avg episode reward: [(0, '21.178')]
[2025-04-29 03:15:18,862][03043] Fps is (10 sec: 3681.9, 60 sec: 3617.8, 300 sec: 3540.3). Total num frames: 4476928. Throughput: 0: 909.0. Samples: 1118528. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:15:18,863][03043] Avg episode reward: [(0, '20.444')]
[2025-04-29 03:15:18,902][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001093_4476928.pth...
[2025-04-29 03:15:18,953][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000986_4038656.pth
[2025-04-29 03:15:23,838][03043] Fps is (10 sec: 4101.0, 60 sec: 3687.5, 300 sec: 3540.9). Total num frames: 4497408. Throughput: 0: 925.3. Samples: 1124416. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:15:23,839][03043] Avg episode reward: [(0, '20.014')]
[2025-04-29 03:15:28,845][03043] Fps is (10 sec: 3692.6, 60 sec: 3687.2, 300 sec: 3540.9). Total num frames: 4513792. Throughput: 0: 912.8. Samples: 1126752. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:15:28,846][03043] Avg episode reward: [(0, '20.282')]
[2025-04-29 03:15:33,897][03043] Fps is (10 sec: 3664.7, 60 sec: 3684.8, 300 sec: 3553.8). Total num frames: 4534272. Throughput: 0: 917.8. Samples: 1132416. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:15:33,898][03043] Avg episode reward: [(0, '20.250')]
[2025-04-29 03:15:38,841][03043] Fps is (10 sec: 3688.1, 60 sec: 3686.5, 300 sec: 3554.9). Total num frames: 4550656. Throughput: 0: 916.4. Samples: 1137856. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:15:38,847][03043] Avg episode reward: [(0, '19.399')]
[2025-04-29 03:15:43,837][03043] Fps is (10 sec: 3296.6, 60 sec: 3619.8, 300 sec: 3554.6). Total num frames: 4567040. Throughput: 0: 908.5. Samples: 1140384. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:15:43,838][03043] Avg episode reward: [(0, '20.252')]
[2025-04-29 03:15:48,844][03043] Fps is (10 sec: 3685.2, 60 sec: 3686.7, 300 sec: 3568.6). Total num frames: 4587520. Throughput: 0: 916.9. Samples: 1145952. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:15:48,845][03043] Avg episode reward: [(0, '22.020')]
[2025-04-29 03:15:53,862][03043] Fps is (10 sec: 3677.1, 60 sec: 3618.2, 300 sec: 3568.4). Total num frames: 4603904. Throughput: 0: 902.9. Samples: 1151104. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:15:53,863][03043] Avg episode reward: [(0, '23.648')]
[2025-04-29 03:15:58,877][03043] Fps is (10 sec: 3674.2, 60 sec: 3685.0, 300 sec: 3567.9). Total num frames: 4624384. Throughput: 0: 905.4. Samples: 1154048. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:15:58,884][03043] Avg episode reward: [(0, '23.523')]
[2025-04-29 03:16:03,862][03043] Fps is (10 sec: 3686.3, 60 sec: 3686.1, 300 sec: 3568.1). Total num frames: 4640768. Throughput: 0: 916.6. Samples: 1159776. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:16:03,866][03043] Avg episode reward: [(0, '22.953')]
[2025-04-29 03:16:08,860][03043] Fps is (10 sec: 3282.4, 60 sec: 3617.5, 300 sec: 3568.2). Total num frames: 4657152. Throughput: 0: 899.8. Samples: 1164928. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:16:08,861][03043] Avg episode reward: [(0, '24.399')]
[2025-04-29 03:16:08,898][03043] Saving new best policy, reward=24.399!
[2025-04-29 03:16:13,848][03043] Fps is (10 sec: 3691.5, 60 sec: 3686.5, 300 sec: 3583.3). Total num frames: 4677632. Throughput: 0: 909.5. Samples: 1167680. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:16:13,850][03043] Avg episode reward: [(0, '23.314')]
[2025-04-29 03:16:18,866][03043] Fps is (10 sec: 3684.2, 60 sec: 3617.9, 300 sec: 3582.3). Total num frames: 4694016. Throughput: 0: 904.4. Samples: 1173088. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:16:18,867][03043] Avg episode reward: [(0, '22.344')]
[2025-04-29 03:16:18,879][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001146_4694016.pth...
[2025-04-29 03:16:18,928][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001040_4259840.pth
[2025-04-29 03:16:23,850][03043] Fps is (10 sec: 3685.9, 60 sec: 3617.4, 300 sec: 3582.2). Total num frames: 4714496. Throughput: 0: 903.6. Samples: 1178528. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:16:23,851][03043] Avg episode reward: [(0, '22.328')]
[2025-04-29 03:16:28,867][03043] Fps is (10 sec: 3686.2, 60 sec: 3616.9, 300 sec: 3581.9). Total num frames: 4730880. Throughput: 0: 911.0. Samples: 1181408. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:16:28,871][03043] Avg episode reward: [(0, '23.539')]
[2025-04-29 03:16:33,838][03043] Fps is (10 sec: 3280.8, 60 sec: 3553.4, 300 sec: 3582.5). Total num frames: 4747264. Throughput: 0: 902.5. Samples: 1186560. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:16:33,839][03043] Avg episode reward: [(0, '23.154')]
[2025-04-29 03:16:38,854][03043] Fps is (10 sec: 3691.2, 60 sec: 3617.3, 300 sec: 3596.3). Total num frames: 4767744. Throughput: 0: 918.9. Samples: 1192448. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:16:38,855][03043] Avg episode reward: [(0, '22.840')]
[2025-04-29 03:16:43,934][03043] Fps is (10 sec: 4057.0, 60 sec: 3680.5, 300 sec: 3609.2). Total num frames: 4788224. Throughput: 0: 916.2. Samples: 1195328. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:16:43,936][03043] Avg episode reward: [(0, '21.848')]
[2025-04-29 03:16:48,849][03043] Fps is (10 sec: 3688.2, 60 sec: 3617.8, 300 sec: 3610.2). Total num frames: 4804608. Throughput: 0: 903.4. Samples: 1200416. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:16:48,850][03043] Avg episode reward: [(0, '22.035')]
[2025-04-29 03:16:53,851][03043] Fps is (10 sec: 3304.1, 60 sec: 3618.8, 300 sec: 3596.0). Total num frames: 4820992. Throughput: 0: 911.1. Samples: 1205920. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:16:53,852][03043] Avg episode reward: [(0, '22.615')]
[2025-04-29 03:16:58,865][03043] Fps is (10 sec: 3271.6, 60 sec: 3550.6, 300 sec: 3596.5). Total num frames: 4837376. Throughput: 0: 898.5. Samples: 1208128. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:16:58,866][03043] Avg episode reward: [(0, '22.510')]
[2025-04-29 03:17:03,852][03043] Fps is (10 sec: 3686.1, 60 sec: 3618.8, 300 sec: 3610.1). Total num frames: 4857856. Throughput: 0: 898.4. Samples: 1213504. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:17:03,853][03043] Avg episode reward: [(0, '22.027')]
[2025-04-29 03:17:08,863][03043] Fps is (10 sec: 3686.9, 60 sec: 3617.9, 300 sec: 3609.9). Total num frames: 4874240. Throughput: 0: 890.8. Samples: 1218624. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:17:08,868][03043] Avg episode reward: [(0, '22.771')]
[2025-04-29 03:17:13,858][03043] Fps is (10 sec: 3275.0, 60 sec: 3549.3, 300 sec: 3610.1). Total num frames: 4890624. Throughput: 0: 878.4. Samples: 1220928. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:17:13,859][03043] Avg episode reward: [(0, '23.357')]
[2025-04-29 03:17:18,837][03043] Fps is (10 sec: 3285.5, 60 sec: 3551.6, 300 sec: 3610.1). Total num frames: 4907008. Throughput: 0: 886.8. Samples: 1226464. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:17:18,838][03043] Avg episode reward: [(0, '22.743')]
[2025-04-29 03:17:18,879][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001198_4907008.pth...
[2025-04-29 03:17:18,940][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001093_4476928.pth
[2025-04-29 03:17:23,865][03043] Fps is (10 sec: 3274.5, 60 sec: 3480.7, 300 sec: 3610.1). Total num frames: 4923392. Throughput: 0: 858.8. Samples: 1231104. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:17:23,866][03043] Avg episode reward: [(0, '22.197')]
[2025-04-29 03:17:28,862][03043] Fps is (10 sec: 3268.6, 60 sec: 3481.9, 300 sec: 3596.2). Total num frames: 4939776. Throughput: 0: 858.3. Samples: 1233888. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:17:28,864][03043] Avg episode reward: [(0, '21.506')]
[2025-04-29 03:17:33,850][03043] Fps is (10 sec: 3691.7, 60 sec: 3549.1, 300 sec: 3610.0). Total num frames: 4960256. Throughput: 0: 862.6. Samples: 1239232. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:17:33,851][03043] Avg episode reward: [(0, '21.311')]
[2025-04-29 03:17:38,836][03043] Fps is (10 sec: 3696.1, 60 sec: 3482.6, 300 sec: 3610.1). Total num frames: 4976640. Throughput: 0: 851.5. Samples: 1244224. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:17:38,837][03043] Avg episode reward: [(0, '21.920')]
[2025-04-29 03:17:43,851][03043] Fps is (10 sec: 3276.4, 60 sec: 3418.0, 300 sec: 3596.2). Total num frames: 4993024. Throughput: 0: 860.7. Samples: 1246848. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:17:43,852][03043] Avg episode reward: [(0, '20.296')]
[2025-04-29 03:17:48,867][03043] Fps is (10 sec: 3266.5, 60 sec: 3412.3, 300 sec: 3595.8). Total num frames: 5009408. Throughput: 0: 853.8. Samples: 1251936. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:17:48,868][03043] Avg episode reward: [(0, '19.158')]
[2025-04-29 03:17:53,843][03043] Fps is (10 sec: 3279.4, 60 sec: 3413.8, 300 sec: 3582.3). Total num frames: 5025792. Throughput: 0: 856.6. Samples: 1257152. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:17:53,844][03043] Avg episode reward: [(0, '20.048')]
[2025-04-29 03:17:58,877][03043] Fps is (10 sec: 3683.0, 60 sec: 3480.9, 300 sec: 3596.1). Total num frames: 5046272. Throughput: 0: 861.5. Samples: 1259712. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:17:58,881][03043] Avg episode reward: [(0, '21.344')]
[2025-04-29 03:18:03,876][03043] Fps is (10 sec: 3674.3, 60 sec: 3411.9, 300 sec: 3596.0). Total num frames: 5062656. Throughput: 0: 847.6. Samples: 1264640. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:18:03,879][03043] Avg episode reward: [(0, '21.253')]
[2025-04-29 03:18:08,837][03043] Fps is (10 sec: 3289.9, 60 sec: 3414.8, 300 sec: 3582.3). Total num frames: 5079040. Throughput: 0: 868.1. Samples: 1270144. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:18:08,838][03043] Avg episode reward: [(0, '19.966')]
[2025-04-29 03:18:13,859][03043] Fps is (10 sec: 3282.5, 60 sec: 3413.3, 300 sec: 3582.4). Total num frames: 5095424. Throughput: 0: 866.2. Samples: 1272864. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:18:13,864][03043] Avg episode reward: [(0, '20.434')]
[2025-04-29 03:18:18,848][03043] Fps is (10 sec: 3273.2, 60 sec: 3412.7, 300 sec: 3582.4). Total num frames: 5111808. Throughput: 0: 852.0. Samples: 1277568. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:18:18,849][03043] Avg episode reward: [(0, '20.509')]
[2025-04-29 03:18:18,888][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001248_5111808.pth...
[2025-04-29 03:18:18,937][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001146_4694016.pth
[2025-04-29 03:18:23,840][03043] Fps is (10 sec: 3283.0, 60 sec: 3414.7, 300 sec: 3568.5). Total num frames: 5128192. Throughput: 0: 854.0. Samples: 1282656. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:18:23,841][03043] Avg episode reward: [(0, '19.494')]
[2025-04-29 03:18:28,859][03043] Fps is (10 sec: 3273.1, 60 sec: 3413.5, 300 sec: 3568.4). Total num frames: 5144576. Throughput: 0: 845.4. Samples: 1284896. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:18:28,860][03043] Avg episode reward: [(0, '19.555')]
[2025-04-29 03:18:33,895][03043] Fps is (10 sec: 3258.8, 60 sec: 3342.6, 300 sec: 3554.0). Total num frames: 5160960. Throughput: 0: 850.0. Samples: 1290208. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:18:33,896][03043] Avg episode reward: [(0, '19.945')]
[2025-04-29 03:18:38,845][03043] Fps is (10 sec: 3691.6, 60 sec: 3412.8, 300 sec: 3568.6). Total num frames: 5181440. Throughput: 0: 849.0. Samples: 1295360. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:18:38,847][03043] Avg episode reward: [(0, '21.024')]
[2025-04-29 03:18:43,862][03043] Fps is (10 sec: 3698.6, 60 sec: 3412.7, 300 sec: 3554.5). Total num frames: 5197824. Throughput: 0: 845.8. Samples: 1297760. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:18:43,863][03043] Avg episode reward: [(0, '20.498')]
[2025-04-29 03:18:48,855][03043] Fps is (10 sec: 3273.5, 60 sec: 3414.0, 300 sec: 3554.4). Total num frames: 5214208. Throughput: 0: 856.6. Samples: 1303168. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:18:48,856][03043] Avg episode reward: [(0, '19.643')]
[2025-04-29 03:18:53,849][03043] Fps is (10 sec: 3281.1, 60 sec: 3413.0, 300 sec: 3541.4). Total num frames: 5230592. Throughput: 0: 839.6. Samples: 1307936. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:18:53,850][03043] Avg episode reward: [(0, '20.056')]
[2025-04-29 03:18:58,875][03043] Fps is (10 sec: 3270.4, 60 sec: 3345.2, 300 sec: 3540.4). Total num frames: 5246976. Throughput: 0: 842.4. Samples: 1310784. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:18:58,876][03043] Avg episode reward: [(0, '18.755')]
[2025-04-29 03:19:03,875][03043] Fps is (10 sec: 3676.9, 60 sec: 3413.4, 300 sec: 3540.4). Total num frames: 5267456. Throughput: 0: 855.7. Samples: 1316096. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:19:03,881][03043] Avg episode reward: [(0, '17.993')]
[2025-04-29 03:19:08,859][03043] Fps is (10 sec: 3692.3, 60 sec: 3412.1, 300 sec: 3540.5). Total num frames: 5283840. Throughput: 0: 849.4. Samples: 1320896. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:19:08,860][03043] Avg episode reward: [(0, '18.751')]
[2025-04-29 03:19:13,865][03043] Fps is (10 sec: 3280.2, 60 sec: 3413.0, 300 sec: 3526.6). Total num frames: 5300224. Throughput: 0: 861.0. Samples: 1323648. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:19:13,866][03043] Avg episode reward: [(0, '18.649')]
[2025-04-29 03:19:18,864][03043] Fps is (10 sec: 3275.0, 60 sec: 3412.4, 300 sec: 3526.6). Total num frames: 5316608. Throughput: 0: 854.6. Samples: 1328640. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:19:18,865][03043] Avg episode reward: [(0, '20.423')]
[2025-04-29 03:19:18,903][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001298_5316608.pth...
[2025-04-29 03:19:18,959][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001198_4907008.pth
[2025-04-29 03:19:23,854][03043] Fps is (10 sec: 3280.4, 60 sec: 3412.5, 300 sec: 3526.8). Total num frames: 5332992. Throughput: 0: 856.0. Samples: 1333888. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:19:23,855][03043] Avg episode reward: [(0, '20.446')]
[2025-04-29 03:19:28,857][03043] Fps is (10 sec: 3689.2, 60 sec: 3481.7, 300 sec: 3526.9). Total num frames: 5353472. Throughput: 0: 863.4. Samples: 1336608. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:19:28,858][03043] Avg episode reward: [(0, '21.230')]
[2025-04-29 03:19:33,862][03043] Fps is (10 sec: 3683.5, 60 sec: 3483.5, 300 sec: 3526.5). Total num frames: 5369856. Throughput: 0: 850.4. Samples: 1341440. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:19:33,863][03043] Avg episode reward: [(0, '22.626')]
[2025-04-29 03:19:38,844][03043] Fps is (10 sec: 3281.1, 60 sec: 3413.4, 300 sec: 3513.1). Total num frames: 5386240. Throughput: 0: 864.1. Samples: 1346816. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:19:38,845][03043] Avg episode reward: [(0, '21.916')]
[2025-04-29 03:19:43,864][03043] Fps is (10 sec: 3276.2, 60 sec: 3413.3, 300 sec: 3512.7). Total num frames: 5402624. Throughput: 0: 862.8. Samples: 1349600. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:19:43,868][03043] Avg episode reward: [(0, '22.305')]
[2025-04-29 03:19:48,847][03043] Fps is (10 sec: 3275.6, 60 sec: 3413.8, 300 sec: 3499.1). Total num frames: 5419008. Throughput: 0: 851.7. Samples: 1354400. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:19:48,848][03043] Avg episode reward: [(0, '21.785')]
[2025-04-29 03:19:53,889][03043] Fps is (10 sec: 3677.3, 60 sec: 3479.3, 300 sec: 3512.4). Total num frames: 5439488. Throughput: 0: 862.7. Samples: 1359744. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:19:53,890][03043] Avg episode reward: [(0, '21.223')]
[2025-04-29 03:19:58,859][03043] Fps is (10 sec: 3272.9, 60 sec: 3414.2, 300 sec: 3498.9). Total num frames: 5451776. Throughput: 0: 854.2. Samples: 1362080. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:19:58,860][03043] Avg episode reward: [(0, '21.420')]
[2025-04-29 03:20:03,863][03043] Fps is (10 sec: 3285.1, 60 sec: 3414.0, 300 sec: 3498.8). Total num frames: 5472256. Throughput: 0: 856.2. Samples: 1367168. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:20:03,864][03043] Avg episode reward: [(0, '21.047')]
[2025-04-29 03:20:08,871][03043] Fps is (10 sec: 3681.9, 60 sec: 3412.6, 300 sec: 3498.7). Total num frames: 5488640. Throughput: 0: 854.4. Samples: 1372352. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:20:08,873][03043] Avg episode reward: [(0, '23.851')]
[2025-04-29 03:20:13,865][03043] Fps is (10 sec: 3276.3, 60 sec: 3413.3, 300 sec: 3485.0). Total num frames: 5505024. Throughput: 0: 847.5. Samples: 1374752. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:20:13,866][03043] Avg episode reward: [(0, '23.630')]
[2025-04-29 03:20:18,842][03043] Fps is (10 sec: 3286.5, 60 sec: 3414.6, 300 sec: 3471.1). Total num frames: 5521408. Throughput: 0: 861.5. Samples: 1380192. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:20:18,843][03043] Avg episode reward: [(0, '23.601')]
[2025-04-29 03:20:18,888][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001348_5521408.pth...
[2025-04-29 03:20:18,935][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001248_5111808.pth
[2025-04-29 03:20:23,847][03043] Fps is (10 sec: 3282.6, 60 sec: 3413.7, 300 sec: 3471.2). Total num frames: 5537792. Throughput: 0: 846.2. Samples: 1384896. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:20:23,849][03043] Avg episode reward: [(0, '23.898')]
[2025-04-29 03:20:28,859][03043] Fps is (10 sec: 3680.1, 60 sec: 3413.2, 300 sec: 3471.6). Total num frames: 5558272. Throughput: 0: 844.9. Samples: 1387616. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:20:28,860][03043] Avg episode reward: [(0, '22.446')]
[2025-04-29 03:20:33,844][03043] Fps is (10 sec: 3687.7, 60 sec: 3414.4, 300 sec: 3471.2). Total num frames: 5574656. Throughput: 0: 857.7. Samples: 1392992. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:20:33,848][03043] Avg episode reward: [(0, '20.841')]
[2025-04-29 03:20:38,857][03043] Fps is (10 sec: 3277.5, 60 sec: 3412.6, 300 sec: 3470.9). Total num frames: 5591040. Throughput: 0: 847.5. Samples: 1397856. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:20:38,858][03043] Avg episode reward: [(0, '19.701')]
[2025-04-29 03:20:43,856][03043] Fps is (10 sec: 3272.7, 60 sec: 3413.8, 300 sec: 3457.2). Total num frames: 5607424. Throughput: 0: 856.9. Samples: 1400640. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:20:43,857][03043] Avg episode reward: [(0, '18.498')]
[2025-04-29 03:20:48,886][03043] Fps is (10 sec: 3267.5, 60 sec: 3411.2, 300 sec: 3457.0). Total num frames: 5623808. Throughput: 0: 859.3. Samples: 1405856. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:20:48,887][03043] Avg episode reward: [(0, '17.218')]
[2025-04-29 03:20:53,894][03043] Fps is (10 sec: 3672.6, 60 sec: 3413.0, 300 sec: 3457.1). Total num frames: 5644288. Throughput: 0: 857.2. Samples: 1410944. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:20:53,895][03043] Avg episode reward: [(0, '18.373')]
[2025-04-29 03:20:58,839][03043] Fps is (10 sec: 3703.6, 60 sec: 3482.8, 300 sec: 3457.6). Total num frames: 5660672. Throughput: 0: 863.1. Samples: 1413568. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:20:58,840][03043] Avg episode reward: [(0, '19.544')]
[2025-04-29 03:21:03,855][03043] Fps is (10 sec: 3289.6, 60 sec: 3413.8, 300 sec: 3457.4). Total num frames: 5677056. Throughput: 0: 848.8. Samples: 1418400. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:21:03,856][03043] Avg episode reward: [(0, '20.798')]
[2025-04-29 03:21:08,865][03043] Fps is (10 sec: 3268.2, 60 sec: 3413.7, 300 sec: 3443.2). Total num frames: 5693440. Throughput: 0: 866.5. Samples: 1423904. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:21:08,867][03043] Avg episode reward: [(0, '21.197')]
[2025-04-29 03:21:13,864][03043] Fps is (10 sec: 3273.7, 60 sec: 3413.4, 300 sec: 3443.4). Total num frames: 5709824. Throughput: 0: 865.3. Samples: 1426560. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:21:13,866][03043] Avg episode reward: [(0, '21.389')]
[2025-04-29 03:21:18,882][03043] Fps is (10 sec: 3680.1, 60 sec: 3479.3, 300 sec: 3443.0). Total num frames: 5730304. Throughput: 0: 856.2. Samples: 1431552. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:21:18,883][03043] Avg episode reward: [(0, '21.815')]
[2025-04-29 03:21:18,925][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001399_5730304.pth...
[2025-04-29 03:21:18,982][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001298_5316608.pth
[2025-04-29 03:21:23,850][03043] Fps is (10 sec: 3691.7, 60 sec: 3481.4, 300 sec: 3443.6). Total num frames: 5746688. Throughput: 0: 864.1. Samples: 1436736. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:21:23,851][03043] Avg episode reward: [(0, '21.277')]
[2025-04-29 03:21:28,860][03043] Fps is (10 sec: 3284.0, 60 sec: 3413.3, 300 sec: 3443.2). Total num frames: 5763072. Throughput: 0: 854.7. Samples: 1439104. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:21:28,862][03043] Avg episode reward: [(0, '20.418')]
[2025-04-29 03:21:33,864][03043] Fps is (10 sec: 3272.1, 60 sec: 3412.2, 300 sec: 3429.4). Total num frames: 5779456. Throughput: 0: 855.9. Samples: 1444352. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:21:33,865][03043] Avg episode reward: [(0, '21.048')]
[2025-04-29 03:21:38,850][03043] Fps is (10 sec: 3280.2, 60 sec: 3413.7, 300 sec: 3416.6). Total num frames: 5795840. Throughput: 0: 857.0. Samples: 1449472. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:21:38,851][03043] Avg episode reward: [(0, '20.744')]
[2025-04-29 03:21:43,843][03043] Fps is (10 sec: 3283.8, 60 sec: 3414.1, 300 sec: 3415.7). Total num frames: 5812224. Throughput: 0: 849.0. Samples: 1451776. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:21:43,844][03043] Avg episode reward: [(0, '21.032')]
[2025-04-29 03:21:48,844][03043] Fps is (10 sec: 3688.7, 60 sec: 3484.0, 300 sec: 3429.6). Total num frames: 5832704. Throughput: 0: 862.8. Samples: 1457216. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:21:48,845][03043] Avg episode reward: [(0, '22.817')]
[2025-04-29 03:21:53,846][03043] Fps is (10 sec: 3275.8, 60 sec: 3347.7, 300 sec: 3415.9). Total num frames: 5844992. Throughput: 0: 846.6. Samples: 1461984. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:21:53,847][03043] Avg episode reward: [(0, '22.910')]
[2025-04-29 03:21:58,854][03043] Fps is (10 sec: 3273.6, 60 sec: 3412.5, 300 sec: 3415.6). Total num frames: 5865472. Throughput: 0: 845.7. Samples: 1464608. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:21:58,854][03043] Avg episode reward: [(0, '22.796')]
[2025-04-29 03:22:03,847][03043] Fps is (10 sec: 3685.9, 60 sec: 3413.8, 300 sec: 3415.8). Total num frames: 5881856. Throughput: 0: 860.4. Samples: 1470240. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:22:03,852][03043] Avg episode reward: [(0, '21.689')]
[2025-04-29 03:22:08,838][03043] Fps is (10 sec: 3281.7, 60 sec: 3414.9, 300 sec: 3415.9). Total num frames: 5898240. Throughput: 0: 855.0. Samples: 1475200. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:22:08,839][03043] Avg episode reward: [(0, '21.357')]
[2025-04-29 03:22:13,852][03043] Fps is (10 sec: 3684.7, 60 sec: 3482.3, 300 sec: 3429.4). Total num frames: 5918720. Throughput: 0: 861.3. Samples: 1477856. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:22:13,853][03043] Avg episode reward: [(0, '21.803')]
[2025-04-29 03:22:18,932][03043] Fps is (10 sec: 3246.4, 60 sec: 3342.3, 300 sec: 3414.9). Total num frames: 5931008. Throughput: 0: 855.6. Samples: 1482912. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:22:18,933][03043] Avg episode reward: [(0, '21.135')]
[2025-04-29 03:22:18,949][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001449_5935104.pth...
[2025-04-29 03:22:18,995][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001348_5521408.pth
[2025-04-29 03:22:23,861][03043] Fps is (10 sec: 3273.8, 60 sec: 3412.7, 300 sec: 3429.5). Total num frames: 5951488. Throughput: 0: 856.0. Samples: 1488000. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:22:23,862][03043] Avg episode reward: [(0, '21.169')]
[2025-04-29 03:22:28,858][03043] Fps is (10 sec: 3714.1, 60 sec: 3413.5, 300 sec: 3415.6). Total num frames: 5967872. Throughput: 0: 864.4. Samples: 1490688. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:22:28,865][03043] Avg episode reward: [(0, '21.324')]
[2025-04-29 03:22:33,858][03043] Fps is (10 sec: 3277.8, 60 sec: 3413.7, 300 sec: 3415.4). Total num frames: 5984256. Throughput: 0: 851.6. Samples: 1495552. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:22:33,859][03043] Avg episode reward: [(0, '20.744')]
[2025-04-29 03:22:38,841][03043] Fps is (10 sec: 3282.2, 60 sec: 3413.8, 300 sec: 3415.8). Total num frames: 6000640. Throughput: 0: 865.5. Samples: 1500928. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:22:38,842][03043] Avg episode reward: [(0, '20.317')]
[2025-04-29 03:22:43,842][03043] Fps is (10 sec: 3282.1, 60 sec: 3413.4, 300 sec: 3415.9). Total num frames: 6017024. Throughput: 0: 867.8. Samples: 1503648. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:22:43,845][03043] Avg episode reward: [(0, '21.171')]
[2025-04-29 03:22:48,844][03043] Fps is (10 sec: 3685.3, 60 sec: 3413.3, 300 sec: 3429.5). Total num frames: 6037504. Throughput: 0: 849.8. Samples: 1508480. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:22:48,845][03043] Avg episode reward: [(0, '20.777')]
[2025-04-29 03:22:53,865][03043] Fps is (10 sec: 3678.0, 60 sec: 3480.5, 300 sec: 3415.8). Total num frames: 6053888. Throughput: 0: 857.8. Samples: 1513824. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:22:53,866][03043] Avg episode reward: [(0, '21.017')]
[2025-04-29 03:22:58,855][03043] Fps is (10 sec: 3273.4, 60 sec: 3413.3, 300 sec: 3415.9). Total num frames: 6070272. Throughput: 0: 852.6. Samples: 1516224. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:22:58,856][03043] Avg episode reward: [(0, '21.043')]
[2025-04-29 03:23:03,853][03043] Fps is (10 sec: 3280.9, 60 sec: 3413.0, 300 sec: 3415.5). Total num frames: 6086656. Throughput: 0: 857.7. Samples: 1521440. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:23:03,854][03043] Avg episode reward: [(0, '21.508')]
[2025-04-29 03:23:08,862][03043] Fps is (10 sec: 3274.3, 60 sec: 3412.0, 300 sec: 3415.6). Total num frames: 6103040. Throughput: 0: 857.6. Samples: 1526592. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:23:08,871][03043] Avg episode reward: [(0, '20.713')]
[2025-04-29 03:23:13,922][03043] Fps is (10 sec: 3660.9, 60 sec: 3409.3, 300 sec: 3428.7). Total num frames: 6123520. Throughput: 0: 847.8. Samples: 1528896. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:23:13,923][03043] Avg episode reward: [(0, '20.623')]
[2025-04-29 03:23:18,848][03043] Fps is (10 sec: 3691.7, 60 sec: 3486.5, 300 sec: 3429.4). Total num frames: 6139904. Throughput: 0: 859.2. Samples: 1534208. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:23:18,849][03043] Avg episode reward: [(0, '19.535')]
[2025-04-29 03:23:18,890][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001499_6139904.pth...
[2025-04-29 03:23:18,944][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001399_5730304.pth
[2025-04-29 03:23:23,850][03043] Fps is (10 sec: 3300.8, 60 sec: 3414.0, 300 sec: 3429.6). Total num frames: 6156288. Throughput: 0: 848.9. Samples: 1539136. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:23:23,851][03043] Avg episode reward: [(0, '18.311')]
[2025-04-29 03:23:28,867][03043] Fps is (10 sec: 3270.4, 60 sec: 3412.8, 300 sec: 3429.9). Total num frames: 6172672. Throughput: 0: 845.0. Samples: 1541696. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:23:28,869][03043] Avg episode reward: [(0, '18.149')]
[2025-04-29 03:23:33,843][03043] Fps is (10 sec: 3279.1, 60 sec: 3414.2, 300 sec: 3415.7). Total num frames: 6189056. Throughput: 0: 851.9. Samples: 1546816. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:23:33,848][03043] Avg episode reward: [(0, '16.724')]
[2025-04-29 03:23:38,863][03043] Fps is (10 sec: 3278.1, 60 sec: 3412.1, 300 sec: 3415.6). Total num frames: 6205440. Throughput: 0: 837.0. Samples: 1551488. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:23:38,864][03043] Avg episode reward: [(0, '17.134')]
[2025-04-29 03:23:43,867][03043] Fps is (10 sec: 3268.9, 60 sec: 3411.9, 300 sec: 3415.5). Total num frames: 6221824. Throughput: 0: 845.3. Samples: 1554272. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:23:43,868][03043] Avg episode reward: [(0, '17.788')]
[2025-04-29 03:23:48,859][03043] Fps is (10 sec: 3278.3, 60 sec: 3344.2, 300 sec: 3415.5). Total num frames: 6238208. Throughput: 0: 841.8. Samples: 1559328. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:23:48,860][03043] Avg episode reward: [(0, '18.132')]
[2025-04-29 03:23:53,854][03043] Fps is (10 sec: 3281.0, 60 sec: 3345.7, 300 sec: 3415.9). Total num frames: 6254592. Throughput: 0: 838.6. Samples: 1564320. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:23:53,855][03043] Avg episode reward: [(0, '19.695')]
[2025-04-29 03:23:58,843][03043] Fps is (10 sec: 3692.3, 60 sec: 3414.0, 300 sec: 3416.0). Total num frames: 6275072. Throughput: 0: 849.9. Samples: 1567072. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:23:58,844][03043] Avg episode reward: [(0, '19.961')]
[2025-04-29 03:24:03,862][03043] Fps is (10 sec: 3683.6, 60 sec: 3412.8, 300 sec: 3415.6). Total num frames: 6291456. Throughput: 0: 837.4. Samples: 1571904. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:24:03,863][03043] Avg episode reward: [(0, '20.531')]
[2025-04-29 03:24:08,866][03043] Fps is (10 sec: 3269.3, 60 sec: 3413.1, 300 sec: 3415.6). Total num frames: 6307840. Throughput: 0: 846.6. Samples: 1577248. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:24:08,867][03043] Avg episode reward: [(0, '20.818')]
[2025-04-29 03:24:13,852][03043] Fps is (10 sec: 3279.8, 60 sec: 3349.0, 300 sec: 3415.8). Total num frames: 6324224. Throughput: 0: 850.8. Samples: 1579968. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:24:13,854][03043] Avg episode reward: [(0, '22.367')]
[2025-04-29 03:24:18,851][03043] Fps is (10 sec: 3281.8, 60 sec: 3344.9, 300 sec: 3415.7). Total num frames: 6340608. Throughput: 0: 845.4. Samples: 1584864. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:24:18,852][03043] Avg episode reward: [(0, '23.333')]
[2025-04-29 03:24:18,899][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001548_6340608.pth...
[2025-04-29 03:24:18,958][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001449_5935104.pth
[2025-04-29 03:24:23,857][03043] Fps is (10 sec: 3684.8, 60 sec: 3412.9, 300 sec: 3415.6). Total num frames: 6361088. Throughput: 0: 859.9. Samples: 1590176. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:24:23,858][03043] Avg episode reward: [(0, '22.695')]
[2025-04-29 03:24:28,855][03043] Fps is (10 sec: 3275.5, 60 sec: 3345.8, 300 sec: 3401.8). Total num frames: 6373376. Throughput: 0: 852.1. Samples: 1592608. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:24:28,856][03043] Avg episode reward: [(0, '21.499')]
[2025-04-29 03:24:33,840][03043] Fps is (10 sec: 3282.2, 60 sec: 3413.5, 300 sec: 3415.7). Total num frames: 6393856. Throughput: 0: 853.0. Samples: 1597696. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:24:33,841][03043] Avg episode reward: [(0, '23.510')]
[2025-04-29 03:24:38,843][03043] Fps is (10 sec: 3690.9, 60 sec: 3414.5, 300 sec: 3415.9). Total num frames: 6410240. Throughput: 0: 867.1. Samples: 1603328. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:24:38,847][03043] Avg episode reward: [(0, '23.644')]
[2025-04-29 03:24:43,853][03043] Fps is (10 sec: 3681.5, 60 sec: 3482.4, 300 sec: 3429.5). Total num frames: 6430720. Throughput: 0: 860.2. Samples: 1605792. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:24:43,855][03043] Avg episode reward: [(0, '22.523')]
[2025-04-29 03:24:48,851][03043] Fps is (10 sec: 4092.7, 60 sec: 3550.3, 300 sec: 3430.0). Total num frames: 6451200. Throughput: 0: 886.3. Samples: 1611776. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:24:48,852][03043] Avg episode reward: [(0, '20.529')]
[2025-04-29 03:24:53,843][03043] Fps is (10 sec: 3690.2, 60 sec: 3550.5, 300 sec: 3443.6). Total num frames: 6467584. Throughput: 0: 882.9. Samples: 1616960. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:24:53,844][03043] Avg episode reward: [(0, '22.119')]
[2025-04-29 03:24:58,872][03043] Fps is (10 sec: 3269.9, 60 sec: 3479.9, 300 sec: 3429.4). Total num frames: 6483968. Throughput: 0: 886.4. Samples: 1619872. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:24:58,873][03043] Avg episode reward: [(0, '21.449')]
[2025-04-29 03:25:03,850][03043] Fps is (10 sec: 3684.0, 60 sec: 3550.6, 300 sec: 3443.7). Total num frames: 6504448. Throughput: 0: 903.1. Samples: 1625504. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:25:03,855][03043] Avg episode reward: [(0, '21.423')]
[2025-04-29 03:25:08,855][03043] Fps is (10 sec: 3692.7, 60 sec: 3550.5, 300 sec: 3443.5). Total num frames: 6520832. Throughput: 0: 898.9. Samples: 1630624. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:25:08,856][03043] Avg episode reward: [(0, '22.339')]
[2025-04-29 03:25:13,850][03043] Fps is (10 sec: 3686.3, 60 sec: 3618.3, 300 sec: 3457.2). Total num frames: 6541312. Throughput: 0: 908.2. Samples: 1633472. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:25:13,851][03043] Avg episode reward: [(0, '22.181')]
[2025-04-29 03:25:18,844][03043] Fps is (10 sec: 3690.3, 60 sec: 3618.5, 300 sec: 3457.3). Total num frames: 6557696. Throughput: 0: 918.7. Samples: 1639040. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:25:18,850][03043] Avg episode reward: [(0, '22.754')]
[2025-04-29 03:25:18,901][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001601_6557696.pth...
[2025-04-29 03:25:18,977][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001499_6139904.pth
[2025-04-29 03:25:23,900][03043] Fps is (10 sec: 3668.3, 60 sec: 3615.6, 300 sec: 3456.8). Total num frames: 6578176. Throughput: 0: 910.5. Samples: 1644352. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:25:23,905][03043] Avg episode reward: [(0, '22.135')]
[2025-04-29 03:25:28,838][03043] Fps is (10 sec: 3688.5, 60 sec: 3687.4, 300 sec: 3457.4). Total num frames: 6594560. Throughput: 0: 921.9. Samples: 1647264. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:25:28,839][03043] Avg episode reward: [(0, '20.171')]
[2025-04-29 03:25:33,845][03043] Fps is (10 sec: 3294.7, 60 sec: 3617.8, 300 sec: 3457.4). Total num frames: 6610944. Throughput: 0: 903.2. Samples: 1652416. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:25:33,846][03043] Avg episode reward: [(0, '20.142')]
[2025-04-29 03:25:38,855][03043] Fps is (10 sec: 3680.1, 60 sec: 3685.6, 300 sec: 3471.2). Total num frames: 6631424. Throughput: 0: 915.0. Samples: 1658144. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:25:38,856][03043] Avg episode reward: [(0, '20.303')]
[2025-04-29 03:25:43,837][03043] Fps is (10 sec: 3689.3, 60 sec: 3619.1, 300 sec: 3471.8). Total num frames: 6647808. Throughput: 0: 915.2. Samples: 1661024. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:25:43,839][03043] Avg episode reward: [(0, '20.448')]
[2025-04-29 03:25:48,851][03043] Fps is (10 sec: 3688.1, 60 sec: 3618.1, 300 sec: 3471.7). Total num frames: 6668288. Throughput: 0: 902.4. Samples: 1666112. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:25:48,852][03043] Avg episode reward: [(0, '20.697')]
[2025-04-29 03:25:53,862][03043] Fps is (10 sec: 3677.3, 60 sec: 3617.0, 300 sec: 3470.9). Total num frames: 6684672. Throughput: 0: 914.3. Samples: 1671776. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:25:53,863][03043] Avg episode reward: [(0, '20.858')]
[2025-04-29 03:25:58,862][03043] Fps is (10 sec: 3273.1, 60 sec: 3618.7, 300 sec: 3471.1). Total num frames: 6701056. Throughput: 0: 907.1. Samples: 1674304. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:25:58,863][03043] Avg episode reward: [(0, '22.631')]
[2025-04-29 03:26:03,854][03043] Fps is (10 sec: 3689.4, 60 sec: 3617.9, 300 sec: 3485.2). Total num frames: 6721536. Throughput: 0: 905.8. Samples: 1679808. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:26:03,855][03043] Avg episode reward: [(0, '22.621')]
[2025-04-29 03:26:08,844][03043] Fps is (10 sec: 4103.6, 60 sec: 3687.1, 300 sec: 3499.2). Total num frames: 6742016. Throughput: 0: 914.9. Samples: 1685472. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:26:08,845][03043] Avg episode reward: [(0, '22.353')]
[2025-04-29 03:26:13,841][03043] Fps is (10 sec: 3691.1, 60 sec: 3618.7, 300 sec: 3485.6). Total num frames: 6758400. Throughput: 0: 901.6. Samples: 1687840. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:26:13,842][03043] Avg episode reward: [(0, '23.953')]
[2025-04-29 03:26:18,875][03043] Fps is (10 sec: 3674.8, 60 sec: 3684.5, 300 sec: 3498.7). Total num frames: 6778880. Throughput: 0: 914.6. Samples: 1693600. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:26:18,876][03043] Avg episode reward: [(0, '23.999')]
[2025-04-29 03:26:18,886][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001655_6778880.pth...
[2025-04-29 03:26:18,939][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001548_6340608.pth
[2025-04-29 03:26:23,848][03043] Fps is (10 sec: 3274.6, 60 sec: 3552.9, 300 sec: 3485.2). Total num frames: 6791168. Throughput: 0: 899.0. Samples: 1698592. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:26:23,849][03043] Avg episode reward: [(0, '23.875')]
[2025-04-29 03:26:28,849][03043] Fps is (10 sec: 3285.4, 60 sec: 3617.5, 300 sec: 3499.1). Total num frames: 6811648. Throughput: 0: 896.5. Samples: 1701376. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:26:28,850][03043] Avg episode reward: [(0, '22.864')]
[2025-04-29 03:26:33,867][03043] Fps is (10 sec: 4088.0, 60 sec: 3685.0, 300 sec: 3512.6). Total num frames: 6832128. Throughput: 0: 909.9. Samples: 1707072. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:26:33,869][03043] Avg episode reward: [(0, '22.212')]
[2025-04-29 03:26:38,859][03043] Fps is (10 sec: 3682.7, 60 sec: 3617.9, 300 sec: 3512.6). Total num frames: 6848512. Throughput: 0: 898.9. Samples: 1712224. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:26:38,864][03043] Avg episode reward: [(0, '21.215')]
[2025-04-29 03:26:43,928][03043] Fps is (10 sec: 3664.2, 60 sec: 3680.8, 300 sec: 3511.8). Total num frames: 6868992. Throughput: 0: 906.0. Samples: 1715136. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:26:43,930][03043] Avg episode reward: [(0, '20.034')]
[2025-04-29 03:26:48,859][03043] Fps is (10 sec: 3686.5, 60 sec: 3617.7, 300 sec: 3526.6). Total num frames: 6885376. Throughput: 0: 905.1. Samples: 1720544. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:26:48,860][03043] Avg episode reward: [(0, '20.505')]
[2025-04-29 03:26:53,848][03043] Fps is (10 sec: 3303.3, 60 sec: 3619.0, 300 sec: 3512.9). Total num frames: 6901760. Throughput: 0: 899.5. Samples: 1725952. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:26:53,849][03043] Avg episode reward: [(0, '21.754')]
[2025-04-29 03:26:58,844][03043] Fps is (10 sec: 3691.8, 60 sec: 3687.5, 300 sec: 3526.8). Total num frames: 6922240. Throughput: 0: 910.2. Samples: 1728800. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:26:58,845][03043] Avg episode reward: [(0, '22.413')]
[2025-04-29 03:27:03,843][03043] Fps is (10 sec: 3688.2, 60 sec: 3618.8, 300 sec: 3526.7). Total num frames: 6938624. Throughput: 0: 895.9. Samples: 1733888. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:27:03,844][03043] Avg episode reward: [(0, '23.041')]
[2025-04-29 03:27:08,841][03043] Fps is (10 sec: 3687.7, 60 sec: 3618.3, 300 sec: 3526.9). Total num frames: 6959104. Throughput: 0: 913.9. Samples: 1739712. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:27:08,841][03043] Avg episode reward: [(0, '22.875')]
[2025-04-29 03:27:13,850][03043] Fps is (10 sec: 3684.0, 60 sec: 3617.6, 300 sec: 3541.6). Total num frames: 6975488. Throughput: 0: 915.9. Samples: 1742592. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:27:13,851][03043] Avg episode reward: [(0, '23.802')]
[2025-04-29 03:27:18,848][03043] Fps is (10 sec: 3274.3, 60 sec: 3551.5, 300 sec: 3526.9). Total num frames: 6991872. Throughput: 0: 901.4. Samples: 1747616. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:27:18,849][03043] Avg episode reward: [(0, '22.445')]
[2025-04-29 03:27:18,888][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001707_6991872.pth...
[2025-04-29 03:27:18,936][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001601_6557696.pth
[2025-04-29 03:27:23,842][03043] Fps is (10 sec: 3689.3, 60 sec: 3686.8, 300 sec: 3540.8). Total num frames: 7012352. Throughput: 0: 914.1. Samples: 1753344. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:27:23,843][03043] Avg episode reward: [(0, '22.338')]
[2025-04-29 03:27:28,851][03043] Fps is (10 sec: 3685.4, 60 sec: 3618.0, 300 sec: 3540.7). Total num frames: 7028736. Throughput: 0: 906.8. Samples: 1755872. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:27:28,852][03043] Avg episode reward: [(0, '21.895')]
[2025-04-29 03:27:33,846][03043] Fps is (10 sec: 3684.8, 60 sec: 3619.4, 300 sec: 3554.4). Total num frames: 7049216. Throughput: 0: 910.5. Samples: 1761504. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:27:33,847][03043] Avg episode reward: [(0, '23.125')]
[2025-04-29 03:27:38,862][03043] Fps is (10 sec: 3682.5, 60 sec: 3618.0, 300 sec: 3554.3). Total num frames: 7065600. Throughput: 0: 914.9. Samples: 1767136. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:27:38,867][03043] Avg episode reward: [(0, '23.592')]
[2025-04-29 03:27:43,843][03043] Fps is (10 sec: 3687.5, 60 sec: 3623.3, 300 sec: 3554.5). Total num frames: 7086080. Throughput: 0: 906.0. Samples: 1769568. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:27:43,844][03043] Avg episode reward: [(0, '22.542')]
[2025-04-29 03:27:48,848][03043] Fps is (10 sec: 3691.5, 60 sec: 3618.8, 300 sec: 3554.7). Total num frames: 7102464. Throughput: 0: 922.9. Samples: 1775424. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:27:48,849][03043] Avg episode reward: [(0, '24.201')]
[2025-04-29 03:27:53,867][03043] Fps is (10 sec: 3269.2, 60 sec: 3617.0, 300 sec: 3554.4). Total num frames: 7118848. Throughput: 0: 905.4. Samples: 1780480. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:27:53,868][03043] Avg episode reward: [(0, '24.201')]
[2025-04-29 03:27:58,843][03043] Fps is (10 sec: 3688.4, 60 sec: 3618.2, 300 sec: 3568.5). Total num frames: 7139328. Throughput: 0: 905.4. Samples: 1783328. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:27:58,844][03043] Avg episode reward: [(0, '26.204')]
[2025-04-29 03:27:58,883][03043] Saving new best policy, reward=26.204!
[2025-04-29 03:28:03,872][03043] Fps is (10 sec: 4093.8, 60 sec: 3684.6, 300 sec: 3582.1). Total num frames: 7159808. Throughput: 0: 919.0. Samples: 1788992. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:28:03,873][03043] Avg episode reward: [(0, '25.518')]
[2025-04-29 03:28:08,860][03043] Fps is (10 sec: 3680.0, 60 sec: 3617.0, 300 sec: 3569.1). Total num frames: 7176192. Throughput: 0: 905.6. Samples: 1794112. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:28:08,861][03043] Avg episode reward: [(0, '26.285')]
[2025-04-29 03:28:08,898][03043] Saving new best policy, reward=26.285!
[2025-04-29 03:28:13,860][03043] Fps is (10 sec: 3280.8, 60 sec: 3617.5, 300 sec: 3568.2). Total num frames: 7192576. Throughput: 0: 912.9. Samples: 1796960. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:28:13,861][03043] Avg episode reward: [(0, '26.807')]
[2025-04-29 03:28:13,900][03043] Saving new best policy, reward=26.807!
[2025-04-29 03:28:18,936][03043] Fps is (10 sec: 3251.9, 60 sec: 3612.8, 300 sec: 3567.3). Total num frames: 7208960. Throughput: 0: 905.6. Samples: 1802336. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:28:18,937][03043] Avg episode reward: [(0, '24.856')]
[2025-04-29 03:28:18,950][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001761_7213056.pth...
[2025-04-29 03:28:18,995][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001655_6778880.pth
[2025-04-29 03:28:23,840][03043] Fps is (10 sec: 3693.5, 60 sec: 3618.2, 300 sec: 3582.6). Total num frames: 7229440. Throughput: 0: 901.4. Samples: 1807680. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:28:23,841][03043] Avg episode reward: [(0, '23.871')]
[2025-04-29 03:28:28,853][03043] Fps is (10 sec: 4130.3, 60 sec: 3686.3, 300 sec: 3596.0). Total num frames: 7249920. Throughput: 0: 910.7. Samples: 1810560. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:28:28,854][03043] Avg episode reward: [(0, '22.353')]
[2025-04-29 03:28:33,849][03043] Fps is (10 sec: 3683.2, 60 sec: 3618.0, 300 sec: 3596.3). Total num frames: 7266304. Throughput: 0: 893.8. Samples: 1815648. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:28:33,850][03043] Avg episode reward: [(0, '21.813')]
[2025-04-29 03:28:38,844][03043] Fps is (10 sec: 3280.0, 60 sec: 3619.2, 300 sec: 3596.4). Total num frames: 7282688. Throughput: 0: 902.9. Samples: 1821088. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:28:38,845][03043] Avg episode reward: [(0, '21.269')]
[2025-04-29 03:28:43,843][03043] Fps is (10 sec: 3278.7, 60 sec: 3549.9, 300 sec: 3596.3). Total num frames: 7299072. Throughput: 0: 894.6. Samples: 1823584. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:28:43,845][03043] Avg episode reward: [(0, '21.509')]
[2025-04-29 03:28:48,838][03043] Fps is (10 sec: 3278.8, 60 sec: 3550.5, 300 sec: 3596.3). Total num frames: 7315456. Throughput: 0: 873.2. Samples: 1828256. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:28:48,839][03043] Avg episode reward: [(0, '20.544')]
[2025-04-29 03:28:53,851][03043] Fps is (10 sec: 3274.3, 60 sec: 3550.8, 300 sec: 3582.2). Total num frames: 7331840. Throughput: 0: 879.8. Samples: 1833696. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:28:53,852][03043] Avg episode reward: [(0, '20.498')]
[2025-04-29 03:28:58,862][03043] Fps is (10 sec: 3268.9, 60 sec: 3480.5, 300 sec: 3582.3). Total num frames: 7348224. Throughput: 0: 866.8. Samples: 1835968. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:28:58,863][03043] Avg episode reward: [(0, '21.650')]
[2025-04-29 03:29:03,886][03043] Fps is (10 sec: 3673.5, 60 sec: 3480.8, 300 sec: 3595.9). Total num frames: 7368704. Throughput: 0: 863.5. Samples: 1841152. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:29:03,887][03043] Avg episode reward: [(0, '23.009')]
[2025-04-29 03:29:08,857][03043] Fps is (10 sec: 3688.2, 60 sec: 3481.8, 300 sec: 3596.1). Total num frames: 7385088. Throughput: 0: 860.1. Samples: 1846400. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:29:08,861][03043] Avg episode reward: [(0, '23.199')]
[2025-04-29 03:29:13,854][03043] Fps is (10 sec: 3287.4, 60 sec: 3482.0, 300 sec: 3596.1). Total num frames: 7401472. Throughput: 0: 848.4. Samples: 1848736. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:29:13,854][03043] Avg episode reward: [(0, '22.632')]
[2025-04-29 03:29:18,848][03043] Fps is (10 sec: 3279.7, 60 sec: 3486.7, 300 sec: 3582.4). Total num frames: 7417856. Throughput: 0: 854.1. Samples: 1854080. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:29:18,849][03043] Avg episode reward: [(0, '23.812')]
[2025-04-29 03:29:18,889][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001811_7417856.pth...
[2025-04-29 03:29:18,938][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001707_6991872.pth
[2025-04-29 03:29:23,839][03043] Fps is (10 sec: 3281.6, 60 sec: 3413.4, 300 sec: 3596.3). Total num frames: 7434240. Throughput: 0: 839.9. Samples: 1858880. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:29:23,840][03043] Avg episode reward: [(0, '24.106')]
[2025-04-29 03:29:28,862][03043] Fps is (10 sec: 3272.3, 60 sec: 3344.6, 300 sec: 3582.0). Total num frames: 7450624. Throughput: 0: 843.7. Samples: 1861568. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:29:28,863][03043] Avg episode reward: [(0, '23.756')]
[2025-04-29 03:29:33,861][03043] Fps is (10 sec: 3678.2, 60 sec: 3412.6, 300 sec: 3595.9). Total num frames: 7471104. Throughput: 0: 860.7. Samples: 1867008. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:29:33,867][03043] Avg episode reward: [(0, '20.741')]
[2025-04-29 03:29:38,853][03043] Fps is (10 sec: 3689.6, 60 sec: 3412.8, 300 sec: 3582.3). Total num frames: 7487488. Throughput: 0: 849.0. Samples: 1871904. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:29:38,854][03043] Avg episode reward: [(0, '20.249')]
[2025-04-29 03:29:43,859][03043] Fps is (10 sec: 3277.5, 60 sec: 3412.4, 300 sec: 3568.3). Total num frames: 7503872. Throughput: 0: 857.7. Samples: 1874560. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:29:43,860][03043] Avg episode reward: [(0, '18.557')]
[2025-04-29 03:29:48,870][03043] Fps is (10 sec: 3271.1, 60 sec: 3411.5, 300 sec: 3568.1). Total num frames: 7520256. Throughput: 0: 859.3. Samples: 1879808. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:29:48,872][03043] Avg episode reward: [(0, '18.169')]
[2025-04-29 03:29:53,848][03043] Fps is (10 sec: 3280.5, 60 sec: 3413.5, 300 sec: 3568.7). Total num frames: 7536640. Throughput: 0: 852.1. Samples: 1884736. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:29:53,849][03043] Avg episode reward: [(0, '16.689')]
[2025-04-29 03:29:58,857][03043] Fps is (10 sec: 3691.3, 60 sec: 3481.9, 300 sec: 3568.3). Total num frames: 7557120. Throughput: 0: 859.0. Samples: 1887392. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:29:58,858][03043] Avg episode reward: [(0, '16.594')]
[2025-04-29 03:30:03,846][03043] Fps is (10 sec: 3277.3, 60 sec: 3347.3, 300 sec: 3554.6). Total num frames: 7569408. Throughput: 0: 849.8. Samples: 1892320. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:30:03,847][03043] Avg episode reward: [(0, '16.464')]
[2025-04-29 03:30:08,862][03043] Fps is (10 sec: 3275.2, 60 sec: 3413.1, 300 sec: 3554.4). Total num frames: 7589888. Throughput: 0: 864.3. Samples: 1897792. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:30:08,863][03043] Avg episode reward: [(0, '16.928')]
[2025-04-29 03:30:13,846][03043] Fps is (10 sec: 3686.6, 60 sec: 3413.8, 300 sec: 3554.5). Total num frames: 7606272. Throughput: 0: 868.6. Samples: 1900640. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:30:13,847][03043] Avg episode reward: [(0, '16.224')]
[2025-04-29 03:30:18,851][03043] Fps is (10 sec: 3280.4, 60 sec: 3413.2, 300 sec: 3541.2). Total num frames: 7622656. Throughput: 0: 854.2. Samples: 1905440. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:30:18,854][03043] Avg episode reward: [(0, '16.317')]
[2025-04-29 03:30:18,897][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001861_7622656.pth...
[2025-04-29 03:30:18,952][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001761_7213056.pth
[2025-04-29 03:30:23,839][03043] Fps is (10 sec: 3688.8, 60 sec: 3481.6, 300 sec: 3554.5). Total num frames: 7643136. Throughput: 0: 865.7. Samples: 1910848. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:30:23,840][03043] Avg episode reward: [(0, '18.651')]
[2025-04-29 03:30:28,869][03043] Fps is (10 sec: 3679.9, 60 sec: 3481.2, 300 sec: 3554.2). Total num frames: 7659520. Throughput: 0: 858.1. Samples: 1913184. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:30:28,870][03043] Avg episode reward: [(0, '19.105')]
[2025-04-29 03:30:33,852][03043] Fps is (10 sec: 3272.7, 60 sec: 3413.9, 300 sec: 3540.7). Total num frames: 7675904. Throughput: 0: 856.5. Samples: 1918336. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:30:33,853][03043] Avg episode reward: [(0, '19.847')]
[2025-04-29 03:30:38,854][03043] Fps is (10 sec: 3281.7, 60 sec: 3413.3, 300 sec: 3540.4). Total num frames: 7692288. Throughput: 0: 861.8. Samples: 1923520. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:30:38,859][03043] Avg episode reward: [(0, '19.998')]
[2025-04-29 03:30:43,845][03043] Fps is (10 sec: 3278.8, 60 sec: 3414.1, 300 sec: 3526.8). Total num frames: 7708672. Throughput: 0: 857.1. Samples: 1925952. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:30:43,846][03043] Avg episode reward: [(0, '20.030')]
[2025-04-29 03:30:48,865][03043] Fps is (10 sec: 3682.1, 60 sec: 3481.9, 300 sec: 3540.6). Total num frames: 7729152. Throughput: 0: 866.5. Samples: 1931328. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:30:48,866][03043] Avg episode reward: [(0, '20.744')]
[2025-04-29 03:30:53,849][03043] Fps is (10 sec: 3275.6, 60 sec: 3413.2, 300 sec: 3526.9). Total num frames: 7741440. Throughput: 0: 851.4. Samples: 1936096. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:30:53,855][03043] Avg episode reward: [(0, '20.513')]
[2025-04-29 03:30:58,844][03043] Fps is (10 sec: 3283.8, 60 sec: 3414.1, 300 sec: 3526.8). Total num frames: 7761920. Throughput: 0: 847.7. Samples: 1938784. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:30:58,845][03043] Avg episode reward: [(0, '21.198')]
[2025-04-29 03:31:03,855][03043] Fps is (10 sec: 3684.4, 60 sec: 3481.1, 300 sec: 3512.7). Total num frames: 7778304. Throughput: 0: 861.8. Samples: 1944224. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:31:03,856][03043] Avg episode reward: [(0, '21.118')]
[2025-04-29 03:31:08,862][03043] Fps is (10 sec: 3270.9, 60 sec: 3413.3, 300 sec: 3512.6). Total num frames: 7794688. Throughput: 0: 846.5. Samples: 1948960. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:31:08,863][03043] Avg episode reward: [(0, '20.286')]
[2025-04-29 03:31:13,850][03043] Fps is (10 sec: 3278.3, 60 sec: 3413.1, 300 sec: 3499.3). Total num frames: 7811072. Throughput: 0: 858.0. Samples: 1951776. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:31:13,851][03043] Avg episode reward: [(0, '21.190')]
[2025-04-29 03:31:18,874][03043] Fps is (10 sec: 3273.0, 60 sec: 3412.1, 300 sec: 3512.5). Total num frames: 7827456. Throughput: 0: 857.2. Samples: 1956928. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:31:18,875][03043] Avg episode reward: [(0, '20.692')]
[2025-04-29 03:31:18,936][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001911_7827456.pth...
[2025-04-29 03:31:19,009][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001811_7417856.pth
[2025-04-29 03:31:23,860][03043] Fps is (10 sec: 3682.7, 60 sec: 3412.1, 300 sec: 3512.7). Total num frames: 7847936. Throughput: 0: 852.5. Samples: 1961888. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:31:23,861][03043] Avg episode reward: [(0, '20.994')]
[2025-04-29 03:31:28,864][03043] Fps is (10 sec: 3690.0, 60 sec: 3413.6, 300 sec: 3499.0). Total num frames: 7864320. Throughput: 0: 860.1. Samples: 1964672. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:31:28,865][03043] Avg episode reward: [(0, '21.861')]
[2025-04-29 03:31:33,867][03043] Fps is (10 sec: 3274.5, 60 sec: 3412.4, 300 sec: 3498.9). Total num frames: 7880704. Throughput: 0: 846.9. Samples: 1969440. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:31:33,868][03043] Avg episode reward: [(0, '22.532')]
[2025-04-29 03:31:38,851][03043] Fps is (10 sec: 3280.9, 60 sec: 3413.5, 300 sec: 3486.0). Total num frames: 7897088. Throughput: 0: 861.1. Samples: 1974848. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:31:38,853][03043] Avg episode reward: [(0, '24.163')]
[2025-04-29 03:31:43,863][03043] Fps is (10 sec: 3278.2, 60 sec: 3412.3, 300 sec: 3485.0). Total num frames: 7913472. Throughput: 0: 858.7. Samples: 1977440. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:31:43,864][03043] Avg episode reward: [(0, '23.541')]
[2025-04-29 03:31:48,861][03043] Fps is (10 sec: 3273.7, 60 sec: 3345.3, 300 sec: 3484.9). Total num frames: 7929856. Throughput: 0: 844.7. Samples: 1982240. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:31:48,862][03043] Avg episode reward: [(0, '23.252')]
[2025-04-29 03:31:53,851][03043] Fps is (10 sec: 3690.8, 60 sec: 3481.5, 300 sec: 3485.0). Total num frames: 7950336. Throughput: 0: 859.9. Samples: 1987648. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:31:53,852][03043] Avg episode reward: [(0, '23.283')]
[2025-04-29 03:31:58,851][03043] Fps is (10 sec: 3689.9, 60 sec: 3412.9, 300 sec: 3485.0). Total num frames: 7966720. Throughput: 0: 850.5. Samples: 1990048. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:31:58,852][03043] Avg episode reward: [(0, '22.751')]
[2025-04-29 03:32:03,865][03043] Fps is (10 sec: 3272.4, 60 sec: 3412.8, 300 sec: 3470.9). Total num frames: 7983104. Throughput: 0: 849.2. Samples: 1995136. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:32:03,866][03043] Avg episode reward: [(0, '22.475')]
[2025-04-29 03:32:08,843][03043] Fps is (10 sec: 3279.6, 60 sec: 3414.4, 300 sec: 3471.3). Total num frames: 7999488. Throughput: 0: 857.9. Samples: 2000480. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:32:08,850][03043] Avg episode reward: [(0, '21.652')]
[2025-04-29 03:32:13,852][03043] Fps is (10 sec: 3280.8, 60 sec: 3413.2, 300 sec: 3471.1). Total num frames: 8015872. Throughput: 0: 845.7. Samples: 2002720. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:32:13,853][03043] Avg episode reward: [(0, '21.346')]
[2025-04-29 03:32:18,853][03043] Fps is (10 sec: 3682.8, 60 sec: 3482.8, 300 sec: 3471.1). Total num frames: 8036352. Throughput: 0: 860.0. Samples: 2008128. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:32:18,854][03043] Avg episode reward: [(0, '19.964')]
[2025-04-29 03:32:18,895][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001962_8036352.pth...
[2025-04-29 03:32:18,949][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001861_7622656.pth
[2025-04-29 03:32:23,846][03043] Fps is (10 sec: 3278.8, 60 sec: 3345.8, 300 sec: 3457.4). Total num frames: 8048640. Throughput: 0: 846.3. Samples: 2012928. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:32:23,847][03043] Avg episode reward: [(0, '19.591')]
[2025-04-29 03:32:28,861][03043] Fps is (10 sec: 3273.9, 60 sec: 3413.5, 300 sec: 3457.1). Total num frames: 8069120. Throughput: 0: 845.5. Samples: 2015488. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:32:28,862][03043] Avg episode reward: [(0, '21.152')]
[2025-04-29 03:32:33,859][03043] Fps is (10 sec: 3681.8, 60 sec: 3413.8, 300 sec: 3457.3). Total num frames: 8085504. Throughput: 0: 861.9. Samples: 2021024. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:32:33,861][03043] Avg episode reward: [(0, '19.593')]
[2025-04-29 03:32:38,867][03043] Fps is (10 sec: 3275.0, 60 sec: 3412.5, 300 sec: 3443.1). Total num frames: 8101888. Throughput: 0: 848.8. Samples: 2025856. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:32:38,868][03043] Avg episode reward: [(0, '20.975')]
[2025-04-29 03:32:43,836][03043] Fps is (10 sec: 3284.3, 60 sec: 3414.9, 300 sec: 3443.6). Total num frames: 8118272. Throughput: 0: 854.3. Samples: 2028480. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:32:43,837][03043] Avg episode reward: [(0, '20.197')]
[2025-04-29 03:32:48,875][03043] Fps is (10 sec: 3274.2, 60 sec: 3412.5, 300 sec: 3443.3). Total num frames: 8134656. Throughput: 0: 858.8. Samples: 2033792. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:32:48,879][03043] Avg episode reward: [(0, '20.938')]
[2025-04-29 03:32:53,845][03043] Fps is (10 sec: 3683.0, 60 sec: 3413.7, 300 sec: 3443.4). Total num frames: 8155136. Throughput: 0: 854.0. Samples: 2038912. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:32:53,846][03043] Avg episode reward: [(0, '21.107')]
[2025-04-29 03:32:58,851][03043] Fps is (10 sec: 3695.2, 60 sec: 3413.3, 300 sec: 3429.8). Total num frames: 8171520. Throughput: 0: 864.0. Samples: 2041600. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:32:58,852][03043] Avg episode reward: [(0, '20.491')]
[2025-04-29 03:33:03,842][03043] Fps is (10 sec: 3278.0, 60 sec: 3414.6, 300 sec: 3429.7). Total num frames: 8187904. Throughput: 0: 852.1. Samples: 2046464. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:33:03,843][03043] Avg episode reward: [(0, '22.223')]
[2025-04-29 03:33:08,917][03043] Fps is (10 sec: 3662.2, 60 sec: 3477.3, 300 sec: 3442.7). Total num frames: 8208384. Throughput: 0: 865.5. Samples: 2051936. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:33:08,919][03043] Avg episode reward: [(0, '20.934')]
[2025-04-29 03:33:13,863][03043] Fps is (10 sec: 3678.7, 60 sec: 3481.0, 300 sec: 3444.3). Total num frames: 8224768. Throughput: 0: 868.2. Samples: 2054560. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:33:13,865][03043] Avg episode reward: [(0, '21.188')]
[2025-04-29 03:33:18,841][03043] Fps is (10 sec: 3301.9, 60 sec: 3414.0, 300 sec: 3429.5). Total num frames: 8241152. Throughput: 0: 851.5. Samples: 2059328. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:33:18,842][03043] Avg episode reward: [(0, '21.506')]
[2025-04-29 03:33:18,880][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002012_8241152.pth...
[2025-04-29 03:33:18,932][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001911_7827456.pth
[2025-04-29 03:33:23,857][03043] Fps is (10 sec: 3278.7, 60 sec: 3481.0, 300 sec: 3415.6). Total num frames: 8257536. Throughput: 0: 862.8. Samples: 2064672. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:33:23,858][03043] Avg episode reward: [(0, '21.354')]
[2025-04-29 03:33:28,862][03043] Fps is (10 sec: 3270.0, 60 sec: 3413.3, 300 sec: 3415.5). Total num frames: 8273920. Throughput: 0: 859.2. Samples: 2067168. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:33:28,863][03043] Avg episode reward: [(0, '22.080')]
[2025-04-29 03:33:33,863][03043] Fps is (10 sec: 3274.6, 60 sec: 3413.1, 300 sec: 3415.4). Total num frames: 8290304. Throughput: 0: 855.0. Samples: 2072256. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:33:33,865][03043] Avg episode reward: [(0, '21.268')]
[2025-04-29 03:33:38,907][03043] Fps is (10 sec: 3669.8, 60 sec: 3479.3, 300 sec: 3428.8). Total num frames: 8310784. Throughput: 0: 857.8. Samples: 2077568. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:33:38,910][03043] Avg episode reward: [(0, '21.795')]
[2025-04-29 03:33:43,856][03043] Fps is (10 sec: 3279.2, 60 sec: 3412.2, 300 sec: 3415.4). Total num frames: 8323072. Throughput: 0: 846.8. Samples: 2079712. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:33:43,857][03043] Avg episode reward: [(0, '24.113')]
[2025-04-29 03:33:48,865][03043] Fps is (10 sec: 3290.5, 60 sec: 3482.2, 300 sec: 3429.4). Total num frames: 8343552. Throughput: 0: 855.7. Samples: 2084992. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:33:48,866][03043] Avg episode reward: [(0, '24.787')]
[2025-04-29 03:33:53,870][03043] Fps is (10 sec: 3272.2, 60 sec: 3343.7, 300 sec: 3415.6). Total num frames: 8355840. Throughput: 0: 842.1. Samples: 2089792. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:33:53,872][03043] Avg episode reward: [(0, '24.387')]
[2025-04-29 03:33:58,886][03043] Fps is (10 sec: 3270.0, 60 sec: 3411.3, 300 sec: 3415.6). Total num frames: 8376320. Throughput: 0: 835.1. Samples: 2092160. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:33:58,887][03043] Avg episode reward: [(0, '23.485')]
[2025-04-29 03:34:03,847][03043] Fps is (10 sec: 3694.9, 60 sec: 3413.0, 300 sec: 3415.8). Total num frames: 8392704. Throughput: 0: 848.2. Samples: 2097504. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:34:03,848][03043] Avg episode reward: [(0, '23.173')]
[2025-04-29 03:34:08,853][03043] Fps is (10 sec: 3287.7, 60 sec: 3348.6, 300 sec: 3415.7). Total num frames: 8409088. Throughput: 0: 837.8. Samples: 2102368. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:34:08,854][03043] Avg episode reward: [(0, '22.873')]
[2025-04-29 03:34:13,842][03043] Fps is (10 sec: 3278.5, 60 sec: 3346.2, 300 sec: 3415.7). Total num frames: 8425472. Throughput: 0: 846.6. Samples: 2105248. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:34:13,843][03043] Avg episode reward: [(0, '21.842')]
[2025-04-29 03:34:18,854][03043] Fps is (10 sec: 3276.6, 60 sec: 3344.4, 300 sec: 3415.5). Total num frames: 8441856. Throughput: 0: 850.7. Samples: 2110528. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:34:18,855][03043] Avg episode reward: [(0, '20.813')]
[2025-04-29 03:34:18,908][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002061_8441856.pth...
[2025-04-29 03:34:18,990][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001962_8036352.pth
[2025-04-29 03:34:23,842][03043] Fps is (10 sec: 3686.6, 60 sec: 3414.2, 300 sec: 3429.8). Total num frames: 8462336. Throughput: 0: 845.3. Samples: 2115552. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:34:23,843][03043] Avg episode reward: [(0, '21.961')]
[2025-04-29 03:34:28,854][03043] Fps is (10 sec: 3686.2, 60 sec: 3413.8, 300 sec: 3415.7). Total num frames: 8478720. Throughput: 0: 853.4. Samples: 2118112. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:34:28,855][03043] Avg episode reward: [(0, '22.794')]
[2025-04-29 03:34:33,861][03043] Fps is (10 sec: 3270.4, 60 sec: 3413.5, 300 sec: 3415.6). Total num frames: 8495104. Throughput: 0: 843.5. Samples: 2122944. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:34:33,862][03043] Avg episode reward: [(0, '22.947')]
[2025-04-29 03:34:38,839][03043] Fps is (10 sec: 3281.8, 60 sec: 3348.9, 300 sec: 3415.9). Total num frames: 8511488. Throughput: 0: 856.1. Samples: 2128288. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:34:38,840][03043] Avg episode reward: [(0, '24.679')]
[2025-04-29 03:34:43,861][03043] Fps is (10 sec: 3277.0, 60 sec: 3413.1, 300 sec: 3415.8). Total num frames: 8527872. Throughput: 0: 865.2. Samples: 2131072. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:34:43,865][03043] Avg episode reward: [(0, '25.430')]
[2025-04-29 03:34:48,865][03043] Fps is (10 sec: 3268.3, 60 sec: 3345.1, 300 sec: 3415.4). Total num frames: 8544256. Throughput: 0: 853.7. Samples: 2135936. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:34:48,866][03043] Avg episode reward: [(0, '24.772')]
[2025-04-29 03:34:53,865][03043] Fps is (10 sec: 3684.9, 60 sec: 3481.9, 300 sec: 3415.6). Total num frames: 8564736. Throughput: 0: 863.8. Samples: 2141248. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:34:53,866][03043] Avg episode reward: [(0, '24.935')]
[2025-04-29 03:34:58,869][03043] Fps is (10 sec: 3684.9, 60 sec: 3414.3, 300 sec: 3429.3). Total num frames: 8581120. Throughput: 0: 856.4. Samples: 2143808. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:34:58,870][03043] Avg episode reward: [(0, '23.800')]
[2025-04-29 03:35:03,860][03043] Fps is (10 sec: 3278.3, 60 sec: 3412.6, 300 sec: 3415.7). Total num frames: 8597504. Throughput: 0: 849.7. Samples: 2148768. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:35:03,861][03043] Avg episode reward: [(0, '22.729')]
[2025-04-29 03:35:08,861][03043] Fps is (10 sec: 3279.4, 60 sec: 3412.9, 300 sec: 3415.5). Total num frames: 8613888. Throughput: 0: 855.8. Samples: 2154080. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:35:08,865][03043] Avg episode reward: [(0, '21.856')]
[2025-04-29 03:35:13,854][03043] Fps is (10 sec: 3278.8, 60 sec: 3412.7, 300 sec: 3415.6). Total num frames: 8630272. Throughput: 0: 846.9. Samples: 2156224. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:35:13,855][03043] Avg episode reward: [(0, '21.493')]
[2025-04-29 03:35:18,852][03043] Fps is (10 sec: 3690.0, 60 sec: 3481.7, 300 sec: 3415.5). Total num frames: 8650752. Throughput: 0: 861.3. Samples: 2161696. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:35:18,854][03043] Avg episode reward: [(0, '22.497')]
[2025-04-29 03:35:18,897][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002112_8650752.pth...
[2025-04-29 03:35:18,950][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002012_8241152.pth
[2025-04-29 03:35:23,871][03043] Fps is (10 sec: 3271.2, 60 sec: 3343.4, 300 sec: 3401.7). Total num frames: 8663040. Throughput: 0: 848.5. Samples: 2166496. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:35:23,880][03043] Avg episode reward: [(0, '21.303')]
[2025-04-29 03:35:28,857][03043] Fps is (10 sec: 3275.2, 60 sec: 3413.2, 300 sec: 3415.6). Total num frames: 8683520. Throughput: 0: 844.9. Samples: 2169088. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:35:28,857][03043] Avg episode reward: [(0, '21.474')]
[2025-04-29 03:35:33,837][03043] Fps is (10 sec: 3699.2, 60 sec: 3414.7, 300 sec: 3415.8). Total num frames: 8699904. Throughput: 0: 859.6. Samples: 2174592. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:35:33,838][03043] Avg episode reward: [(0, '22.439')]
[2025-04-29 03:35:38,853][03043] Fps is (10 sec: 3278.0, 60 sec: 3412.5, 300 sec: 3415.6). Total num frames: 8716288. Throughput: 0: 847.2. Samples: 2179360. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:35:38,854][03043] Avg episode reward: [(0, '22.976')]
[2025-04-29 03:35:43,867][03043] Fps is (10 sec: 3267.0, 60 sec: 3413.0, 300 sec: 3401.7). Total num frames: 8732672. Throughput: 0: 853.4. Samples: 2182208. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:35:43,868][03043] Avg episode reward: [(0, '22.224')]
[2025-04-29 03:35:48,837][03043] Fps is (10 sec: 3692.3, 60 sec: 3483.2, 300 sec: 3429.7). Total num frames: 8753152. Throughput: 0: 859.5. Samples: 2187424. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:35:48,839][03043] Avg episode reward: [(0, '21.811')]
[2025-04-29 03:35:53,838][03043] Fps is (10 sec: 3697.0, 60 sec: 3414.9, 300 sec: 3415.7). Total num frames: 8769536. Throughput: 0: 850.2. Samples: 2192320. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:35:53,839][03043] Avg episode reward: [(0, '24.073')]
[2025-04-29 03:35:58,850][03043] Fps is (10 sec: 3272.5, 60 sec: 3414.4, 300 sec: 3415.7). Total num frames: 8785920. Throughput: 0: 863.4. Samples: 2195072. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:35:58,851][03043] Avg episode reward: [(0, '23.725')]
[2025-04-29 03:36:03,862][03043] Fps is (10 sec: 3269.0, 60 sec: 3413.2, 300 sec: 3415.6). Total num frames: 8802304. Throughput: 0: 848.2. Samples: 2199872. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:36:03,863][03043] Avg episode reward: [(0, '24.186')]
[2025-04-29 03:36:08,849][03043] Fps is (10 sec: 3277.2, 60 sec: 3414.0, 300 sec: 3415.7). Total num frames: 8818688. Throughput: 0: 858.7. Samples: 2205120. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:36:08,850][03043] Avg episode reward: [(0, '23.659')]
[2025-04-29 03:36:13,844][03043] Fps is (10 sec: 3282.9, 60 sec: 3413.9, 300 sec: 3416.0). Total num frames: 8835072. Throughput: 0: 860.7. Samples: 2207808. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:36:13,850][03043] Avg episode reward: [(0, '24.304')]
[2025-04-29 03:36:18,841][03043] Fps is (10 sec: 3279.4, 60 sec: 3345.7, 300 sec: 3402.0). Total num frames: 8851456. Throughput: 0: 846.9. Samples: 2212704. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:36:18,842][03043] Avg episode reward: [(0, '24.933')]
[2025-04-29 03:36:18,885][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002161_8851456.pth...
[2025-04-29 03:36:18,935][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002061_8441856.pth
[2025-04-29 03:36:23,850][03043] Fps is (10 sec: 3683.9, 60 sec: 3482.8, 300 sec: 3415.8). Total num frames: 8871936. Throughput: 0: 858.4. Samples: 2217984. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:36:23,852][03043] Avg episode reward: [(0, '24.305')]
[2025-04-29 03:36:28,891][03043] Fps is (10 sec: 3668.0, 60 sec: 3411.4, 300 sec: 3415.4). Total num frames: 8888320. Throughput: 0: 851.4. Samples: 2220544. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:36:28,892][03043] Avg episode reward: [(0, '23.689')]
[2025-04-29 03:36:33,839][03043] Fps is (10 sec: 3280.6, 60 sec: 3413.2, 300 sec: 3415.8). Total num frames: 8904704. Throughput: 0: 844.1. Samples: 2225408. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:36:33,840][03043] Avg episode reward: [(0, '23.666')]
[2025-04-29 03:36:38,836][03043] Fps is (10 sec: 3295.0, 60 sec: 3414.3, 300 sec: 3416.0). Total num frames: 8921088. Throughput: 0: 854.8. Samples: 2230784. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:36:38,837][03043] Avg episode reward: [(0, '23.806')]
[2025-04-29 03:36:43,866][03043] Fps is (10 sec: 3267.9, 60 sec: 3413.4, 300 sec: 3415.6). Total num frames: 8937472. Throughput: 0: 843.1. Samples: 2233024. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:36:43,867][03043] Avg episode reward: [(0, '23.350')]
[2025-04-29 03:36:48,930][03043] Fps is (10 sec: 3246.4, 60 sec: 3339.9, 300 sec: 3400.9). Total num frames: 8953856. Throughput: 0: 852.8. Samples: 2238304. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:36:48,932][03043] Avg episode reward: [(0, '22.394')]
[2025-04-29 03:36:53,931][03043] Fps is (10 sec: 3662.7, 60 sec: 3408.1, 300 sec: 3414.7). Total num frames: 8974336. Throughput: 0: 850.4. Samples: 2243456. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:36:53,933][03043] Avg episode reward: [(0, '22.505')]
[2025-04-29 03:36:58,861][03043] Fps is (10 sec: 3712.0, 60 sec: 3412.7, 300 sec: 3415.7). Total num frames: 8990720. Throughput: 0: 848.0. Samples: 2245984. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:36:58,862][03043] Avg episode reward: [(0, '21.744')]
[2025-04-29 03:37:03,864][03043] Fps is (10 sec: 3298.8, 60 sec: 3413.2, 300 sec: 3415.4). Total num frames: 9007104. Throughput: 0: 863.6. Samples: 2251584. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:37:03,865][03043] Avg episode reward: [(0, '20.977')]
[2025-04-29 03:37:08,865][03043] Fps is (10 sec: 3275.3, 60 sec: 3412.4, 300 sec: 3415.5). Total num frames: 9023488. Throughput: 0: 859.4. Samples: 2256672. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:37:08,866][03043] Avg episode reward: [(0, '20.343')]
[2025-04-29 03:37:13,842][03043] Fps is (10 sec: 3694.5, 60 sec: 3481.7, 300 sec: 3415.8). Total num frames: 9043968. Throughput: 0: 868.5. Samples: 2259584. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:37:13,843][03043] Avg episode reward: [(0, '20.672')]
[2025-04-29 03:37:18,838][03043] Fps is (10 sec: 4107.4, 60 sec: 3550.1, 300 sec: 3443.5). Total num frames: 9064448. Throughput: 0: 886.1. Samples: 2265280. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:37:18,845][03043] Avg episode reward: [(0, '19.455')]
[2025-04-29 03:37:18,894][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002213_9064448.pth...
[2025-04-29 03:37:18,971][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002112_8650752.pth
[2025-04-29 03:37:23,858][03043] Fps is (10 sec: 3680.3, 60 sec: 3481.1, 300 sec: 3429.6). Total num frames: 9080832. Throughput: 0: 879.2. Samples: 2270368. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:37:23,859][03043] Avg episode reward: [(0, '19.787')]
[2025-04-29 03:37:28,882][03043] Fps is (10 sec: 3670.0, 60 sec: 3550.4, 300 sec: 3443.1). Total num frames: 9101312. Throughput: 0: 893.5. Samples: 2273248. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:37:28,883][03043] Avg episode reward: [(0, '19.692')]
[2025-04-29 03:37:33,866][03043] Fps is (10 sec: 3683.7, 60 sec: 3548.3, 300 sec: 3443.4). Total num frames: 9117696. Throughput: 0: 894.4. Samples: 2278496. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:37:33,867][03043] Avg episode reward: [(0, '19.877')]
[2025-04-29 03:37:38,863][03043] Fps is (10 sec: 3283.3, 60 sec: 3548.3, 300 sec: 3443.1). Total num frames: 9134080. Throughput: 0: 902.3. Samples: 2284000. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:37:38,864][03043] Avg episode reward: [(0, '20.405')]
[2025-04-29 03:37:43,846][03043] Fps is (10 sec: 3693.8, 60 sec: 3619.4, 300 sec: 3457.6). Total num frames: 9154560. Throughput: 0: 909.1. Samples: 2286880. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:37:43,850][03043] Avg episode reward: [(0, '21.267')]
[2025-04-29 03:37:48,839][03043] Fps is (10 sec: 3695.3, 60 sec: 3623.6, 300 sec: 3443.5). Total num frames: 9170944. Throughput: 0: 899.3. Samples: 2292032. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:37:48,840][03043] Avg episode reward: [(0, '20.891')]
[2025-04-29 03:37:53,858][03043] Fps is (10 sec: 3682.1, 60 sec: 3622.5, 300 sec: 3457.2). Total num frames: 9191424. Throughput: 0: 916.1. Samples: 2297888. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:37:53,859][03043] Avg episode reward: [(0, '21.456')]
[2025-04-29 03:37:58,846][03043] Fps is (10 sec: 3683.8, 60 sec: 3619.0, 300 sec: 3457.3). Total num frames: 9207808. Throughput: 0: 912.3. Samples: 2300640. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:37:58,847][03043] Avg episode reward: [(0, '22.536')]
[2025-04-29 03:38:03,836][03043] Fps is (10 sec: 3283.9, 60 sec: 3619.8, 300 sec: 3444.4). Total num frames: 9224192. Throughput: 0: 901.0. Samples: 2305824. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:38:03,837][03043] Avg episode reward: [(0, '22.448')]
[2025-04-29 03:38:08,844][03043] Fps is (10 sec: 3687.1, 60 sec: 3687.7, 300 sec: 3457.5). Total num frames: 9244672. Throughput: 0: 914.8. Samples: 2311520. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:38:08,845][03043] Avg episode reward: [(0, '22.352')]
[2025-04-29 03:38:13,836][03043] Fps is (10 sec: 3686.4, 60 sec: 3618.5, 300 sec: 3457.4). Total num frames: 9261056. Throughput: 0: 904.8. Samples: 2313920. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:38:13,837][03043] Avg episode reward: [(0, '22.547')]
[2025-04-29 03:38:18,851][03043] Fps is (10 sec: 3683.8, 60 sec: 3617.3, 300 sec: 3471.3). Total num frames: 9281536. Throughput: 0: 916.2. Samples: 2319712. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:38:18,852][03043] Avg episode reward: [(0, '23.362')]
[2025-04-29 03:38:18,889][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002266_9281536.pth...
[2025-04-29 03:38:18,940][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002161_8851456.pth
[2025-04-29 03:38:23,867][03043] Fps is (10 sec: 3675.1, 60 sec: 3617.6, 300 sec: 3471.1). Total num frames: 9297920. Throughput: 0: 913.0. Samples: 2325088. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:38:23,868][03043] Avg episode reward: [(0, '23.414')]
[2025-04-29 03:38:28,841][03043] Fps is (10 sec: 3690.0, 60 sec: 3620.6, 300 sec: 3485.3). Total num frames: 9318400. Throughput: 0: 906.1. Samples: 2327648. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:38:28,842][03043] Avg episode reward: [(0, '21.478')]
[2025-04-29 03:38:33,858][03043] Fps is (10 sec: 3689.6, 60 sec: 3618.6, 300 sec: 3471.8). Total num frames: 9334784. Throughput: 0: 919.1. Samples: 2333408. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:38:33,859][03043] Avg episode reward: [(0, '21.235')]
[2025-04-29 03:38:38,901][03043] Fps is (10 sec: 3257.4, 60 sec: 3615.8, 300 sec: 3484.5). Total num frames: 9351168. Throughput: 0: 903.7. Samples: 2338592. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:38:38,902][03043] Avg episode reward: [(0, '20.721')]
[2025-04-29 03:38:43,852][03043] Fps is (10 sec: 3688.6, 60 sec: 3617.7, 300 sec: 3485.2). Total num frames: 9371648. Throughput: 0: 905.8. Samples: 2341408. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:38:43,853][03043] Avg episode reward: [(0, '21.816')]
[2025-04-29 03:38:48,842][03043] Fps is (10 sec: 4120.0, 60 sec: 3686.2, 300 sec: 3513.2). Total num frames: 9392128. Throughput: 0: 917.9. Samples: 2347136. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:38:48,844][03043] Avg episode reward: [(0, '20.796')]
[2025-04-29 03:38:53,837][03043] Fps is (10 sec: 3691.9, 60 sec: 3619.3, 300 sec: 3499.5). Total num frames: 9408512. Throughput: 0: 907.5. Samples: 2352352. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:38:53,838][03043] Avg episode reward: [(0, '20.994')]
[2025-04-29 03:38:58,848][03043] Fps is (10 sec: 3274.8, 60 sec: 3618.0, 300 sec: 3498.9). Total num frames: 9424896. Throughput: 0: 917.1. Samples: 2355200. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:38:58,850][03043] Avg episode reward: [(0, '21.469')]
[2025-04-29 03:39:03,848][03043] Fps is (10 sec: 3273.5, 60 sec: 3617.4, 300 sec: 3499.0). Total num frames: 9441280. Throughput: 0: 901.0. Samples: 2360256. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:39:03,849][03043] Avg episode reward: [(0, '21.827')]
[2025-04-29 03:39:08,850][03043] Fps is (10 sec: 3685.7, 60 sec: 3617.7, 300 sec: 3512.7). Total num frames: 9461760. Throughput: 0: 900.6. Samples: 2365600. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:39:08,851][03043] Avg episode reward: [(0, '21.712')]
[2025-04-29 03:39:13,854][03043] Fps is (10 sec: 3683.9, 60 sec: 3617.0, 300 sec: 3512.8). Total num frames: 9478144. Throughput: 0: 905.7. Samples: 2368416. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:39:13,860][03043] Avg episode reward: [(0, '22.469')]
[2025-04-29 03:39:18,841][03043] Fps is (10 sec: 3689.8, 60 sec: 3618.7, 300 sec: 3512.8). Total num frames: 9498624. Throughput: 0: 893.5. Samples: 2373600. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:39:18,842][03043] Avg episode reward: [(0, '22.406')]
[2025-04-29 03:39:18,880][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002319_9498624.pth...
[2025-04-29 03:39:18,928][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002213_9064448.pth
[2025-04-29 03:39:23,836][03043] Fps is (10 sec: 3693.2, 60 sec: 3620.0, 300 sec: 3513.1). Total num frames: 9515008. Throughput: 0: 905.8. Samples: 2379296. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:39:23,837][03043] Avg episode reward: [(0, '22.597')]
[2025-04-29 03:39:28,871][03043] Fps is (10 sec: 3267.0, 60 sec: 3548.1, 300 sec: 3512.7). Total num frames: 9531392. Throughput: 0: 900.6. Samples: 2381952. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:39:28,872][03043] Avg episode reward: [(0, '22.683')]
[2025-04-29 03:39:33,859][03043] Fps is (10 sec: 3678.0, 60 sec: 3618.1, 300 sec: 3526.5). Total num frames: 9551872. Throughput: 0: 892.1. Samples: 2387296. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:39:33,860][03043] Avg episode reward: [(0, '21.199')]
[2025-04-29 03:39:38,844][03043] Fps is (10 sec: 4107.4, 60 sec: 3689.9, 300 sec: 3540.8). Total num frames: 9572352. Throughput: 0: 908.7. Samples: 2393248. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:39:38,845][03043] Avg episode reward: [(0, '22.297')]
[2025-04-29 03:39:43,845][03043] Fps is (10 sec: 3691.7, 60 sec: 3618.6, 300 sec: 3540.9). Total num frames: 9588736. Throughput: 0: 898.9. Samples: 2395648. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:39:43,846][03043] Avg episode reward: [(0, '21.375')]
[2025-04-29 03:39:48,868][03043] Fps is (10 sec: 3677.4, 60 sec: 3616.6, 300 sec: 3540.6). Total num frames: 9609216. Throughput: 0: 912.6. Samples: 2401344. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:39:48,872][03043] Avg episode reward: [(0, '21.247')]
[2025-04-29 03:39:53,849][03043] Fps is (10 sec: 3684.9, 60 sec: 3617.5, 300 sec: 3540.9). Total num frames: 9625600. Throughput: 0: 913.8. Samples: 2406720. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:39:53,850][03043] Avg episode reward: [(0, '21.850')]
[2025-04-29 03:39:58,859][03043] Fps is (10 sec: 3279.9, 60 sec: 3617.5, 300 sec: 3540.6). Total num frames: 9641984. Throughput: 0: 908.7. Samples: 2409312. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:39:58,860][03043] Avg episode reward: [(0, '21.560')]
[2025-04-29 03:40:03,856][03043] Fps is (10 sec: 3683.6, 60 sec: 3685.9, 300 sec: 3554.6). Total num frames: 9662464. Throughput: 0: 918.4. Samples: 2414944. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:40:03,857][03043] Avg episode reward: [(0, '19.692')]
[2025-04-29 03:40:08,860][03043] Fps is (10 sec: 3685.8, 60 sec: 3617.5, 300 sec: 3554.4). Total num frames: 9678848. Throughput: 0: 904.0. Samples: 2420000. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:40:08,861][03043] Avg episode reward: [(0, '19.747')]
[2025-04-29 03:40:13,853][03043] Fps is (10 sec: 3687.6, 60 sec: 3686.5, 300 sec: 3554.5). Total num frames: 9699328. Throughput: 0: 909.9. Samples: 2422880. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:40:13,854][03043] Avg episode reward: [(0, '20.984')]
[2025-04-29 03:40:18,843][03043] Fps is (10 sec: 3692.9, 60 sec: 3618.0, 300 sec: 3568.7). Total num frames: 9715712. Throughput: 0: 919.8. Samples: 2428672. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:40:18,844][03043] Avg episode reward: [(0, '21.038')]
[2025-04-29 03:40:18,892][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002372_9715712.pth...
[2025-04-29 03:40:18,969][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002266_9281536.pth
[2025-04-29 03:40:23,841][03043] Fps is (10 sec: 3280.6, 60 sec: 3617.8, 300 sec: 3554.7). Total num frames: 9732096. Throughput: 0: 899.6. Samples: 2433728. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:40:23,842][03043] Avg episode reward: [(0, '22.274')]
[2025-04-29 03:40:28,864][03043] Fps is (10 sec: 3678.5, 60 sec: 3686.9, 300 sec: 3568.0). Total num frames: 9752576. Throughput: 0: 909.1. Samples: 2436576. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:40:28,866][03043] Avg episode reward: [(0, '22.898')]
[2025-04-29 03:40:33,839][03043] Fps is (10 sec: 3687.3, 60 sec: 3619.3, 300 sec: 3568.5). Total num frames: 9768960. Throughput: 0: 901.6. Samples: 2441888. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:40:33,840][03043] Avg episode reward: [(0, '24.030')]
[2025-04-29 03:40:38,843][03043] Fps is (10 sec: 3694.3, 60 sec: 3618.2, 300 sec: 3582.6). Total num frames: 9789440. Throughput: 0: 903.9. Samples: 2447392. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:40:38,844][03043] Avg episode reward: [(0, '23.349')]
[2025-04-29 03:40:43,855][03043] Fps is (10 sec: 3680.3, 60 sec: 3617.5, 300 sec: 3568.2). Total num frames: 9805824. Throughput: 0: 910.3. Samples: 2450272. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:40:43,860][03043] Avg episode reward: [(0, '23.254')]
[2025-04-29 03:40:48,884][03043] Fps is (10 sec: 3671.2, 60 sec: 3617.2, 300 sec: 3581.7). Total num frames: 9826304. Throughput: 0: 899.7. Samples: 2455456. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:40:48,885][03043] Avg episode reward: [(0, '23.345')]
[2025-04-29 03:40:53,854][03043] Fps is (10 sec: 3686.8, 60 sec: 3617.8, 300 sec: 3582.2). Total num frames: 9842688. Throughput: 0: 918.2. Samples: 2461312. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:40:53,855][03043] Avg episode reward: [(0, '23.790')]
[2025-04-29 03:40:58,857][03043] Fps is (10 sec: 3285.6, 60 sec: 3618.2, 300 sec: 3582.3). Total num frames: 9859072. Throughput: 0: 913.0. Samples: 2463968. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:40:58,858][03043] Avg episode reward: [(0, '24.600')]
[2025-04-29 03:41:03,851][03043] Fps is (10 sec: 3687.7, 60 sec: 3618.5, 300 sec: 3596.1). Total num frames: 9879552. Throughput: 0: 893.7. Samples: 2468896. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:41:03,856][03043] Avg episode reward: [(0, '24.611')]
[2025-04-29 03:41:08,845][03043] Fps is (10 sec: 3691.0, 60 sec: 3619.1, 300 sec: 3596.1). Total num frames: 9895936. Throughput: 0: 900.2. Samples: 2474240. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:41:08,846][03043] Avg episode reward: [(0, '26.067')]
[2025-04-29 03:41:13,849][03043] Fps is (10 sec: 3277.5, 60 sec: 3550.1, 300 sec: 3596.1). Total num frames: 9912320. Throughput: 0: 884.9. Samples: 2476384. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:41:13,850][03043] Avg episode reward: [(0, '27.012')]
[2025-04-29 03:41:13,886][03043] Saving new best policy, reward=27.012!
[2025-04-29 03:41:18,852][03043] Fps is (10 sec: 3274.4, 60 sec: 3549.3, 300 sec: 3582.2). Total num frames: 9928704. Throughput: 0: 887.2. Samples: 2481824. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:41:18,853][03043] Avg episode reward: [(0, '27.151')]
[2025-04-29 03:41:18,895][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002424_9928704.pth...
[2025-04-29 03:41:18,949][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002319_9498624.pth
[2025-04-29 03:41:18,957][03043] Saving new best policy, reward=27.151!
[2025-04-29 03:41:23,877][03043] Fps is (10 sec: 3267.6, 60 sec: 3547.8, 300 sec: 3582.4). Total num frames: 9945088. Throughput: 0: 872.6. Samples: 2486688. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:41:23,880][03043] Avg episode reward: [(0, '26.892')]
[2025-04-29 03:41:28,853][03043] Fps is (10 sec: 3276.4, 60 sec: 3482.2, 300 sec: 3582.1). Total num frames: 9961472. Throughput: 0: 863.3. Samples: 2489120. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:41:28,854][03043] Avg episode reward: [(0, '24.371')]
[2025-04-29 03:41:33,847][03043] Fps is (10 sec: 3697.4, 60 sec: 3549.4, 300 sec: 3596.0). Total num frames: 9981952. Throughput: 0: 870.4. Samples: 2494592. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:41:33,849][03043] Avg episode reward: [(0, '23.474')]
[2025-04-29 03:41:38,904][03043] Fps is (10 sec: 3260.2, 60 sec: 3409.9, 300 sec: 3581.8). Total num frames: 9994240. Throughput: 0: 845.3. Samples: 2499392. Policy #0 lag: (min: 0.0, avg: 0.0, max: 1.0)
[2025-04-29 03:41:38,905][03043] Avg episode reward: [(0, '21.784')]
[2025-04-29 03:41:41,256][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002443_10006528.pth...
[2025-04-29 03:41:41,308][03043] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002372_9715712.pth
[2025-04-29 03:41:41,353][03043] Stopping RolloutWorker_w0...
[2025-04-29 03:41:41,384][03043] Stopping RolloutWorker_w6...
[2025-04-29 03:41:41,385][03043] Stopping Batcher_0...
[2025-04-29 03:41:41,388][03043] Stopping InferenceWorker_p0-w0...
[2025-04-29 03:41:41,423][03043] Stopping RolloutWorker_w5...
[2025-04-29 03:41:41,458][03043] Stopping RolloutWorker_w2...
[2025-04-29 03:41:41,491][03043] Stopping RolloutWorker_w7...
[2025-04-29 03:41:41,523][03043] Stopping RolloutWorker_w1...
[2025-04-29 03:41:41,555][03043] Stopping RolloutWorker_w4...
[2025-04-29 03:41:41,589][03043] Stopping RolloutWorker_w3...
[2025-04-29 03:41:41,590][03043] Component RolloutWorker_w0 stopped!
[2025-04-29 03:41:41,591][03043] Component RolloutWorker_w6 stopped!
[2025-04-29 03:41:41,592][03043] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002443_10006528.pth...
[2025-04-29 03:41:41,672][03043] Stopping LearnerWorker_p0...
[2025-04-29 03:41:41,675][03043] Component Batcher_0 stopped!
[2025-04-29 03:41:41,676][03043] Component InferenceWorker_p0-w0 stopped!
[2025-04-29 03:41:41,677][03043] Component RolloutWorker_w5 stopped!
[2025-04-29 03:41:41,678][03043] Component RolloutWorker_w2 stopped!
[2025-04-29 03:41:41,679][03043] Component RolloutWorker_w7 stopped!
[2025-04-29 03:41:41,680][03043] Component RolloutWorker_w1 stopped!
[2025-04-29 03:41:41,681][03043] Component RolloutWorker_w4 stopped!
[2025-04-29 03:41:41,682][03043] Component RolloutWorker_w3 stopped!
[2025-04-29 03:41:41,682][03043] Component LearnerWorker_p0 stopped!
[2025-04-29 03:41:41,683][03043] Batcher 0 profile tree view:
batching: 18.8170, releasing_batches: 0.0323
[2025-04-29 03:41:41,684][03043] InferenceWorker_p0-w0 profile tree view:
update_model: 3.3793
one_step: 0.0032
handle_policy_step: 275.5466
deserialize: 17.2195, stack: 1.9625, obs_to_device_normalize: 107.2380, forward: 111.1421, send_messages: 4.6593
prepare_outputs: 25.5853
to_cpu: 12.7354
[2025-04-29 03:41:41,685][03043] Learner 0 profile tree view:
misc: 0.0045, prepare_batch: 22.6921
train: 84.6235
epoch_init: 0.0075, minibatch_init: 0.0113, losses_postprocess: 0.3744, kl_divergence: 0.4841, after_optimizer: 27.6353
calculate_losses: 41.0321
losses_init: 0.0053, forward_head: 1.4959, bptt_initial: 29.2698, tail: 1.0775, advantages_returns: 0.3053, losses: 6.3956
bptt: 2.1823
bptt_forward_core: 2.0914
update: 14.4153
clip: 1.6325
[2025-04-29 03:41:41,686][03043] RolloutWorker_w0 profile tree view:
wait_for_trajectories: 0.2023, enqueue_policy_requests: 12.2841, env_step: 256.7210, overhead: 12.3883, complete_rollouts: 0.2076
save_policy_outputs: 15.7590
split_output_tensors: 6.1371
[2025-04-29 03:41:41,687][03043] RolloutWorker_w7 profile tree view:
wait_for_trajectories: 0.1921, enqueue_policy_requests: 12.1777, env_step: 252.0383, overhead: 12.1271, complete_rollouts: 0.1978
save_policy_outputs: 14.5914
split_output_tensors: 5.9437
[2025-04-29 03:41:41,688][03043] Loop Runner_EvtLoop terminating...
[2025-04-29 03:41:41,689][03043] Runner profile tree view:
main_loop: 2897.3218
[2025-04-29 03:41:41,690][03043] Collected {0: 10006528}, FPS: 3453.7
[2025-04-29 03:41:57,796][03043] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
[2025-04-29 03:41:57,798][03043] Overriding arg 'num_workers' with value 1 passed from command line
[2025-04-29 03:41:57,799][03043] Adding new argument 'no_render'=True that is not in the saved config file!
[2025-04-29 03:41:57,800][03043] Adding new argument 'save_video'=True that is not in the saved config file!
[2025-04-29 03:41:57,801][03043] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2025-04-29 03:41:57,802][03043] Adding new argument 'video_name'=None that is not in the saved config file!
[2025-04-29 03:41:57,803][03043] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
[2025-04-29 03:41:57,804][03043] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2025-04-29 03:41:57,805][03043] Adding new argument 'push_to_hub'=False that is not in the saved config file!
[2025-04-29 03:41:57,805][03043] Adding new argument 'hf_repository'=None that is not in the saved config file!
[2025-04-29 03:41:57,806][03043] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2025-04-29 03:41:57,807][03043] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2025-04-29 03:41:57,808][03043] Adding new argument 'train_script'=None that is not in the saved config file!
[2025-04-29 03:41:57,809][03043] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2025-04-29 03:41:57,810][03043] Using frameskip 1 and render_action_repeat=4 for evaluation
[2025-04-29 03:41:57,820][03043] RunningMeanStd input shape: (3, 72, 128)
[2025-04-29 03:41:57,821][03043] RunningMeanStd input shape: (1,)
[2025-04-29 03:41:57,831][03043] ConvEncoder: input_channels=3
[2025-04-29 03:41:57,863][03043] Conv encoder output size: 512
[2025-04-29 03:41:57,863][03043] Policy head output size: 512
[2025-04-29 03:41:57,880][03043] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002443_10006528.pth...
[2025-04-29 03:41:57,883][03043] Could not load from checkpoint, attempt 0
Traceback (most recent call last):
File "/usr/local/lib/python3.11/dist-packages/sample_factory/algo/learning/learner.py", line 281, in load_checkpoint
checkpoint_dict = torch.load(latest_checkpoint, map_location=device)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.11/dist-packages/torch/serialization.py", line 1470, in load
raise pickle.UnpicklingError(_get_wo_message(str(e))) from None
_pickle.UnpicklingError: Weights only load failed. This file can still be loaded, to do so you have two options, do those steps only if you trust the source of the checkpoint.
(1) In PyTorch 2.6, we changed the default value of the `weights_only` argument in `torch.load` from `False` to `True`. Re-running `torch.load` with `weights_only` set to `False` will likely succeed, but it can result in arbitrary code execution. Do it only if you got the file from a trusted source.
(2) Alternatively, to load with `weights_only=True` please check the recommended steps in the following error message.
WeightsUnpickler error: Unsupported global: GLOBAL numpy.core.multiarray.scalar was not an allowed global by default. Please use `torch.serialization.add_safe_globals([scalar])` or the `torch.serialization.safe_globals([scalar])` context manager to allowlist this global if you trust this class/function.
Check the documentation of torch.load to learn more about types accepted by default with weights_only https://pytorch.org/docs/stable/generated/torch.load.html.
[2025-04-29 03:41:57,885][03043] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002443_10006528.pth...
[2025-04-29 03:41:57,887][03043] Could not load from checkpoint, attempt 1
Traceback (most recent call last):
File "/usr/local/lib/python3.11/dist-packages/sample_factory/algo/learning/learner.py", line 281, in load_checkpoint
checkpoint_dict = torch.load(latest_checkpoint, map_location=device)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.11/dist-packages/torch/serialization.py", line 1470, in load
raise pickle.UnpicklingError(_get_wo_message(str(e))) from None
_pickle.UnpicklingError: Weights only load failed. This file can still be loaded, to do so you have two options, do those steps only if you trust the source of the checkpoint.
(1) In PyTorch 2.6, we changed the default value of the `weights_only` argument in `torch.load` from `False` to `True`. Re-running `torch.load` with `weights_only` set to `False` will likely succeed, but it can result in arbitrary code execution. Do it only if you got the file from a trusted source.
(2) Alternatively, to load with `weights_only=True` please check the recommended steps in the following error message.
WeightsUnpickler error: Unsupported global: GLOBAL numpy.core.multiarray.scalar was not an allowed global by default. Please use `torch.serialization.add_safe_globals([scalar])` or the `torch.serialization.safe_globals([scalar])` context manager to allowlist this global if you trust this class/function.
Check the documentation of torch.load to learn more about types accepted by default with weights_only https://pytorch.org/docs/stable/generated/torch.load.html.
[2025-04-29 03:41:57,888][03043] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002443_10006528.pth...
[2025-04-29 03:41:57,889][03043] Could not load from checkpoint, attempt 2
Traceback (most recent call last):
File "/usr/local/lib/python3.11/dist-packages/sample_factory/algo/learning/learner.py", line 281, in load_checkpoint
checkpoint_dict = torch.load(latest_checkpoint, map_location=device)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.11/dist-packages/torch/serialization.py", line 1470, in load
raise pickle.UnpicklingError(_get_wo_message(str(e))) from None
_pickle.UnpicklingError: Weights only load failed. This file can still be loaded, to do so you have two options, do those steps only if you trust the source of the checkpoint.
(1) In PyTorch 2.6, we changed the default value of the `weights_only` argument in `torch.load` from `False` to `True`. Re-running `torch.load` with `weights_only` set to `False` will likely succeed, but it can result in arbitrary code execution. Do it only if you got the file from a trusted source.
(2) Alternatively, to load with `weights_only=True` please check the recommended steps in the following error message.
WeightsUnpickler error: Unsupported global: GLOBAL numpy.core.multiarray.scalar was not an allowed global by default. Please use `torch.serialization.add_safe_globals([scalar])` or the `torch.serialization.safe_globals([scalar])` context manager to allowlist this global if you trust this class/function.
Check the documentation of torch.load to learn more about types accepted by default with weights_only https://pytorch.org/docs/stable/generated/torch.load.html.
[2025-04-29 03:42:27,294][03043] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
[2025-04-29 03:42:27,295][03043] Overriding arg 'num_workers' with value 1 passed from command line
[2025-04-29 03:42:27,295][03043] Adding new argument 'no_render'=True that is not in the saved config file!
[2025-04-29 03:42:27,296][03043] Adding new argument 'save_video'=True that is not in the saved config file!
[2025-04-29 03:42:27,297][03043] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2025-04-29 03:42:27,298][03043] Adding new argument 'video_name'=None that is not in the saved config file!
[2025-04-29 03:42:27,299][03043] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
[2025-04-29 03:42:27,300][03043] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2025-04-29 03:42:27,301][03043] Adding new argument 'push_to_hub'=False that is not in the saved config file!
[2025-04-29 03:42:27,302][03043] Adding new argument 'hf_repository'=None that is not in the saved config file!
[2025-04-29 03:42:27,303][03043] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2025-04-29 03:42:27,304][03043] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2025-04-29 03:42:27,304][03043] Adding new argument 'train_script'=None that is not in the saved config file!
[2025-04-29 03:42:27,305][03043] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2025-04-29 03:42:27,306][03043] Using frameskip 1 and render_action_repeat=4 for evaluation
[2025-04-29 03:42:27,314][03043] RunningMeanStd input shape: (3, 72, 128)
[2025-04-29 03:42:27,315][03043] RunningMeanStd input shape: (1,)
[2025-04-29 03:42:27,327][03043] ConvEncoder: input_channels=3
[2025-04-29 03:42:27,360][03043] Conv encoder output size: 512
[2025-04-29 03:42:27,361][03043] Policy head output size: 512
[2025-04-29 03:42:27,379][03043] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002443_10006528.pth...
[2025-04-29 03:42:27,844][03043] Num frames 100...
[2025-04-29 03:42:27,982][03043] Num frames 200...
[2025-04-29 03:42:28,105][03043] Num frames 300...
[2025-04-29 03:42:28,234][03043] Num frames 400...
[2025-04-29 03:42:28,364][03043] Num frames 500...
[2025-04-29 03:42:28,491][03043] Num frames 600...
[2025-04-29 03:42:28,620][03043] Num frames 700...
[2025-04-29 03:42:28,748][03043] Num frames 800...
[2025-04-29 03:42:28,835][03043] Avg episode rewards: #0: 21.240, true rewards: #0: 8.240
[2025-04-29 03:42:28,836][03043] Avg episode reward: 21.240, avg true_objective: 8.240
[2025-04-29 03:42:28,948][03043] Num frames 900...
[2025-04-29 03:42:29,074][03043] Num frames 1000...
[2025-04-29 03:42:29,201][03043] Num frames 1100...
[2025-04-29 03:42:29,327][03043] Num frames 1200...
[2025-04-29 03:42:29,454][03043] Num frames 1300...
[2025-04-29 03:42:29,583][03043] Num frames 1400...
[2025-04-29 03:42:29,718][03043] Avg episode rewards: #0: 15.820, true rewards: #0: 7.320
[2025-04-29 03:42:29,719][03043] Avg episode reward: 15.820, avg true_objective: 7.320
[2025-04-29 03:42:29,768][03043] Num frames 1500...
[2025-04-29 03:42:29,894][03043] Num frames 1600...
[2025-04-29 03:42:30,037][03043] Num frames 1700...
[2025-04-29 03:42:30,163][03043] Num frames 1800...
[2025-04-29 03:42:30,294][03043] Num frames 1900...
[2025-04-29 03:42:30,366][03043] Avg episode rewards: #0: 13.707, true rewards: #0: 6.373
[2025-04-29 03:42:30,367][03043] Avg episode reward: 13.707, avg true_objective: 6.373
[2025-04-29 03:42:30,481][03043] Num frames 2000...
[2025-04-29 03:42:30,612][03043] Num frames 2100...
[2025-04-29 03:42:30,742][03043] Num frames 2200...
[2025-04-29 03:42:30,868][03043] Num frames 2300...
[2025-04-29 03:42:31,006][03043] Num frames 2400...
[2025-04-29 03:42:31,138][03043] Num frames 2500...
[2025-04-29 03:42:31,265][03043] Num frames 2600...
[2025-04-29 03:42:31,392][03043] Num frames 2700...
[2025-04-29 03:42:31,504][03043] Avg episode rewards: #0: 14.110, true rewards: #0: 6.860
[2025-04-29 03:42:31,505][03043] Avg episode reward: 14.110, avg true_objective: 6.860
[2025-04-29 03:42:31,576][03043] Num frames 2800...
[2025-04-29 03:42:31,702][03043] Num frames 2900...
[2025-04-29 03:42:31,833][03043] Num frames 3000...
[2025-04-29 03:42:31,961][03043] Num frames 3100...
[2025-04-29 03:42:32,098][03043] Num frames 3200...
[2025-04-29 03:42:32,225][03043] Num frames 3300...
[2025-04-29 03:42:32,354][03043] Num frames 3400...
[2025-04-29 03:42:32,483][03043] Num frames 3500...
[2025-04-29 03:42:32,613][03043] Num frames 3600...
[2025-04-29 03:42:32,743][03043] Num frames 3700...
[2025-04-29 03:42:32,871][03043] Num frames 3800...
[2025-04-29 03:42:32,999][03043] Num frames 3900...
[2025-04-29 03:42:33,146][03043] Num frames 4000...
[2025-04-29 03:42:33,325][03043] Num frames 4100...
[2025-04-29 03:42:33,497][03043] Num frames 4200...
[2025-04-29 03:42:33,674][03043] Num frames 4300...
[2025-04-29 03:42:33,838][03043] Num frames 4400...
[2025-04-29 03:42:34,012][03043] Num frames 4500...
[2025-04-29 03:42:34,198][03043] Num frames 4600...
[2025-04-29 03:42:34,363][03043] Num frames 4700...
[2025-04-29 03:42:34,544][03043] Num frames 4800...
[2025-04-29 03:42:34,677][03043] Avg episode rewards: #0: 22.488, true rewards: #0: 9.688
[2025-04-29 03:42:34,678][03043] Avg episode reward: 22.488, avg true_objective: 9.688
[2025-04-29 03:42:34,777][03043] Num frames 4900...
[2025-04-29 03:42:34,950][03043] Num frames 5000...
[2025-04-29 03:42:35,127][03043] Num frames 5100...
[2025-04-29 03:42:35,311][03043] Num frames 5200...
[2025-04-29 03:42:35,437][03043] Num frames 5300...
[2025-04-29 03:42:35,601][03043] Avg episode rewards: #0: 19.980, true rewards: #0: 8.980
[2025-04-29 03:42:35,603][03043] Avg episode reward: 19.980, avg true_objective: 8.980
[2025-04-29 03:42:35,622][03043] Num frames 5400...
[2025-04-29 03:42:35,749][03043] Num frames 5500...
[2025-04-29 03:42:35,877][03043] Num frames 5600...
[2025-04-29 03:42:36,006][03043] Num frames 5700...
[2025-04-29 03:42:36,134][03043] Num frames 5800...
[2025-04-29 03:42:36,275][03043] Num frames 5900...
[2025-04-29 03:42:36,413][03043] Avg episode rewards: #0: 18.520, true rewards: #0: 8.520
[2025-04-29 03:42:36,414][03043] Avg episode reward: 18.520, avg true_objective: 8.520
[2025-04-29 03:42:36,465][03043] Num frames 6000...
[2025-04-29 03:42:36,594][03043] Num frames 6100...
[2025-04-29 03:42:36,726][03043] Num frames 6200...
[2025-04-29 03:42:36,860][03043] Num frames 6300...
[2025-04-29 03:42:36,988][03043] Num frames 6400...
[2025-04-29 03:42:37,140][03043] Avg episode rewards: #0: 17.095, true rewards: #0: 8.095
[2025-04-29 03:42:37,141][03043] Avg episode reward: 17.095, avg true_objective: 8.095
[2025-04-29 03:42:37,175][03043] Num frames 6500...
[2025-04-29 03:42:37,316][03043] Num frames 6600...
[2025-04-29 03:42:37,447][03043] Num frames 6700...
[2025-04-29 03:42:37,578][03043] Num frames 6800...
[2025-04-29 03:42:37,708][03043] Num frames 6900...
[2025-04-29 03:42:37,840][03043] Num frames 7000...
[2025-04-29 03:42:38,107][03043] Num frames 7100...
[2025-04-29 03:42:38,315][03043] Num frames 7200...
[2025-04-29 03:42:38,444][03043] Num frames 7300...
[2025-04-29 03:42:38,572][03043] Num frames 7400...
[2025-04-29 03:42:38,653][03043] Avg episode rewards: #0: 17.578, true rewards: #0: 8.244
[2025-04-29 03:42:38,654][03043] Avg episode reward: 17.578, avg true_objective: 8.244
[2025-04-29 03:42:38,815][03043] Num frames 7500...
[2025-04-29 03:42:39,068][03043] Num frames 7600...
[2025-04-29 03:42:39,183][03043] Avg episode rewards: #0: 16.144, true rewards: #0: 7.644
[2025-04-29 03:42:39,184][03043] Avg episode reward: 16.144, avg true_objective: 7.644
[2025-04-29 03:43:23,435][03043] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
[2025-04-29 03:44:16,284][03043] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
[2025-04-29 03:44:16,285][03043] Overriding arg 'num_workers' with value 1 passed from command line
[2025-04-29 03:44:16,286][03043] Adding new argument 'no_render'=True that is not in the saved config file!
[2025-04-29 03:44:16,287][03043] Adding new argument 'save_video'=True that is not in the saved config file!
[2025-04-29 03:44:16,288][03043] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2025-04-29 03:44:16,289][03043] Adding new argument 'video_name'=None that is not in the saved config file!
[2025-04-29 03:44:16,290][03043] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
[2025-04-29 03:44:16,291][03043] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2025-04-29 03:44:16,292][03043] Adding new argument 'push_to_hub'=True that is not in the saved config file!
[2025-04-29 03:44:16,293][03043] Adding new argument 'hf_repository'='s94lopez/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
[2025-04-29 03:44:16,295][03043] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2025-04-29 03:44:16,296][03043] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2025-04-29 03:44:16,297][03043] Adding new argument 'train_script'=None that is not in the saved config file!
[2025-04-29 03:44:16,299][03043] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2025-04-29 03:44:16,301][03043] Using frameskip 1 and render_action_repeat=4 for evaluation
[2025-04-29 03:44:16,309][03043] RunningMeanStd input shape: (3, 72, 128)
[2025-04-29 03:44:16,311][03043] RunningMeanStd input shape: (1,)
[2025-04-29 03:44:16,322][03043] ConvEncoder: input_channels=3
[2025-04-29 03:44:16,361][03043] Conv encoder output size: 512
[2025-04-29 03:44:16,362][03043] Policy head output size: 512
[2025-04-29 03:44:16,382][03043] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000002443_10006528.pth...
[2025-04-29 03:44:16,850][03043] Num frames 100...
[2025-04-29 03:44:16,979][03043] Num frames 200...
[2025-04-29 03:44:17,106][03043] Num frames 300...
[2025-04-29 03:44:17,234][03043] Num frames 400...
[2025-04-29 03:44:17,367][03043] Num frames 500...
[2025-04-29 03:44:17,496][03043] Num frames 600...
[2025-04-29 03:44:17,635][03043] Num frames 700...
[2025-04-29 03:44:17,764][03043] Num frames 800...
[2025-04-29 03:44:17,902][03043] Num frames 900...
[2025-04-29 03:44:18,039][03043] Num frames 1000...
[2025-04-29 03:44:18,172][03043] Num frames 1100...
[2025-04-29 03:44:18,310][03043] Num frames 1200...
[2025-04-29 03:44:18,442][03043] Num frames 1300...
[2025-04-29 03:44:18,573][03043] Num frames 1400...
[2025-04-29 03:44:18,713][03043] Num frames 1500...
[2025-04-29 03:44:18,845][03043] Num frames 1600...
[2025-04-29 03:44:18,975][03043] Num frames 1700...
[2025-04-29 03:44:19,109][03043] Num frames 1800...
[2025-04-29 03:44:19,249][03043] Num frames 1900...
[2025-04-29 03:44:19,397][03043] Num frames 2000...
[2025-04-29 03:44:19,548][03043] Num frames 2100...
[2025-04-29 03:44:19,600][03043] Avg episode rewards: #0: 58.999, true rewards: #0: 21.000
[2025-04-29 03:44:19,601][03043] Avg episode reward: 58.999, avg true_objective: 21.000
[2025-04-29 03:44:19,746][03043] Num frames 2200...
[2025-04-29 03:44:19,880][03043] Num frames 2300...
[2025-04-29 03:44:20,015][03043] Num frames 2400...
[2025-04-29 03:44:20,145][03043] Num frames 2500...
[2025-04-29 03:44:20,281][03043] Num frames 2600...
[2025-04-29 03:44:20,412][03043] Num frames 2700...
[2025-04-29 03:44:20,541][03043] Num frames 2800...
[2025-04-29 03:44:20,681][03043] Avg episode rewards: #0: 37.339, true rewards: #0: 14.340
[2025-04-29 03:44:20,682][03043] Avg episode reward: 37.339, avg true_objective: 14.340
[2025-04-29 03:44:20,738][03043] Num frames 2900...
[2025-04-29 03:44:20,874][03043] Num frames 3000...
[2025-04-29 03:44:21,002][03043] Num frames 3100...
[2025-04-29 03:44:21,130][03043] Num frames 3200...
[2025-04-29 03:44:21,259][03043] Num frames 3300...
[2025-04-29 03:44:21,400][03043] Num frames 3400...
[2025-04-29 03:44:21,575][03043] Num frames 3500...
[2025-04-29 03:44:21,767][03043] Num frames 3600...
[2025-04-29 03:44:21,957][03043] Num frames 3700...
[2025-04-29 03:44:22,140][03043] Num frames 3800...
[2025-04-29 03:44:22,330][03043] Num frames 3900...
[2025-04-29 03:44:22,499][03043] Num frames 4000...
[2025-04-29 03:44:22,663][03043] Num frames 4100...
[2025-04-29 03:44:22,834][03043] Num frames 4200...
[2025-04-29 03:44:22,971][03043] Avg episode rewards: #0: 36.146, true rewards: #0: 14.147
[2025-04-29 03:44:22,973][03043] Avg episode reward: 36.146, avg true_objective: 14.147
[2025-04-29 03:44:23,075][03043] Num frames 4300...
[2025-04-29 03:44:23,248][03043] Num frames 4400...
[2025-04-29 03:44:23,430][03043] Num frames 4500...
[2025-04-29 03:44:23,608][03043] Num frames 4600...
[2025-04-29 03:44:23,748][03043] Num frames 4700...
[2025-04-29 03:44:23,880][03043] Num frames 4800...
[2025-04-29 03:44:24,013][03043] Num frames 4900...
[2025-04-29 03:44:24,140][03043] Num frames 5000...
[2025-04-29 03:44:24,272][03043] Avg episode rewards: #0: 32.647, true rewards: #0: 12.647
[2025-04-29 03:44:24,273][03043] Avg episode reward: 32.647, avg true_objective: 12.647
[2025-04-29 03:44:24,327][03043] Num frames 5100...
[2025-04-29 03:44:24,453][03043] Num frames 5200...
[2025-04-29 03:44:24,578][03043] Num frames 5300...
[2025-04-29 03:44:24,702][03043] Num frames 5400...
[2025-04-29 03:44:24,827][03043] Num frames 5500...
[2025-04-29 03:44:24,968][03043] Num frames 5600...
[2025-04-29 03:44:25,096][03043] Num frames 5700...
[2025-04-29 03:44:25,227][03043] Num frames 5800...
[2025-04-29 03:44:25,357][03043] Num frames 5900...
[2025-04-29 03:44:25,489][03043] Num frames 6000...
[2025-04-29 03:44:25,616][03043] Num frames 6100...
[2025-04-29 03:44:25,749][03043] Num frames 6200...
[2025-04-29 03:44:25,879][03043] Num frames 6300...
[2025-04-29 03:44:26,019][03043] Num frames 6400...
[2025-04-29 03:44:26,078][03043] Avg episode rewards: #0: 33.206, true rewards: #0: 12.806
[2025-04-29 03:44:26,079][03043] Avg episode reward: 33.206, avg true_objective: 12.806
[2025-04-29 03:44:26,205][03043] Num frames 6500...
[2025-04-29 03:44:26,338][03043] Num frames 6600...
[2025-04-29 03:44:26,466][03043] Num frames 6700...
[2025-04-29 03:44:26,593][03043] Num frames 6800...
[2025-04-29 03:44:26,749][03043] Num frames 6900...
[2025-04-29 03:44:26,880][03043] Num frames 7000...
[2025-04-29 03:44:27,019][03043] Num frames 7100...
[2025-04-29 03:44:27,148][03043] Num frames 7200...
[2025-04-29 03:44:27,276][03043] Num frames 7300...
[2025-04-29 03:44:27,408][03043] Num frames 7400...
[2025-04-29 03:44:27,540][03043] Num frames 7500...
[2025-04-29 03:44:27,668][03043] Num frames 7600...
[2025-04-29 03:44:27,798][03043] Num frames 7700...
[2025-04-29 03:44:27,931][03043] Num frames 7800...
[2025-04-29 03:44:28,073][03043] Num frames 7900...
[2025-04-29 03:44:28,210][03043] Num frames 8000...
[2025-04-29 03:44:28,343][03043] Num frames 8100...
[2025-04-29 03:44:28,483][03043] Avg episode rewards: #0: 34.771, true rewards: #0: 13.605
[2025-04-29 03:44:28,485][03043] Avg episode reward: 34.771, avg true_objective: 13.605
[2025-04-29 03:44:28,536][03043] Num frames 8200...
[2025-04-29 03:44:28,668][03043] Num frames 8300...
[2025-04-29 03:44:28,798][03043] Num frames 8400...
[2025-04-29 03:44:28,928][03043] Num frames 8500...
[2025-04-29 03:44:29,071][03043] Num frames 8600...
[2025-04-29 03:44:29,203][03043] Num frames 8700...
[2025-04-29 03:44:29,340][03043] Num frames 8800...
[2025-04-29 03:44:29,473][03043] Num frames 8900...
[2025-04-29 03:44:29,616][03043] Num frames 9000...
[2025-04-29 03:44:29,748][03043] Num frames 9100...
[2025-04-29 03:44:29,878][03043] Num frames 9200...
[2025-04-29 03:44:30,006][03043] Num frames 9300...
[2025-04-29 03:44:30,148][03043] Num frames 9400...
[2025-04-29 03:44:30,276][03043] Num frames 9500...
[2025-04-29 03:44:30,409][03043] Num frames 9600...
[2025-04-29 03:44:30,541][03043] Num frames 9700...
[2025-04-29 03:44:30,673][03043] Num frames 9800...
[2025-04-29 03:44:30,806][03043] Num frames 9900...
[2025-04-29 03:44:30,866][03043] Avg episode rewards: #0: 36.860, true rewards: #0: 14.146
[2025-04-29 03:44:30,867][03043] Avg episode reward: 36.860, avg true_objective: 14.146
[2025-04-29 03:44:30,996][03043] Num frames 10000...
[2025-04-29 03:44:31,145][03043] Num frames 10100...
[2025-04-29 03:44:31,277][03043] Num frames 10200...
[2025-04-29 03:44:31,406][03043] Num frames 10300...
[2025-04-29 03:44:31,536][03043] Num frames 10400...
[2025-04-29 03:44:31,665][03043] Num frames 10500...
[2025-04-29 03:44:31,794][03043] Num frames 10600...
[2025-04-29 03:44:31,919][03043] Num frames 10700...
[2025-04-29 03:44:32,051][03043] Num frames 10800...
[2025-04-29 03:44:32,192][03043] Num frames 10900...
[2025-04-29 03:44:32,326][03043] Num frames 11000...
[2025-04-29 03:44:32,460][03043] Num frames 11100...
[2025-04-29 03:44:32,590][03043] Num frames 11200...
[2025-04-29 03:44:32,720][03043] Num frames 11300...
[2025-04-29 03:44:32,850][03043] Num frames 11400...
[2025-04-29 03:44:32,980][03043] Num frames 11500...
[2025-04-29 03:44:33,107][03043] Num frames 11600...
[2025-04-29 03:44:33,246][03043] Num frames 11700...
[2025-04-29 03:44:33,382][03043] Num frames 11800...
[2025-04-29 03:44:33,512][03043] Num frames 11900...
[2025-04-29 03:44:33,646][03043] Num frames 12000...
[2025-04-29 03:44:33,707][03043] Avg episode rewards: #0: 38.877, true rewards: #0: 15.003
[2025-04-29 03:44:33,708][03043] Avg episode reward: 38.877, avg true_objective: 15.003
[2025-04-29 03:44:33,879][03043] Num frames 12100...
[2025-04-29 03:44:34,061][03043] Num frames 12200...
[2025-04-29 03:44:34,238][03043] Num frames 12300...
[2025-04-29 03:44:34,411][03043] Num frames 12400...
[2025-04-29 03:44:34,586][03043] Num frames 12500...
[2025-04-29 03:44:34,753][03043] Num frames 12600...
[2025-04-29 03:44:34,917][03043] Num frames 12700...
[2025-04-29 03:44:35,091][03043] Num frames 12800...
[2025-04-29 03:44:35,233][03043] Avg episode rewards: #0: 36.829, true rewards: #0: 14.273
[2025-04-29 03:44:35,235][03043] Avg episode reward: 36.829, avg true_objective: 14.273
[2025-04-29 03:44:35,343][03043] Num frames 12900...
[2025-04-29 03:44:35,527][03043] Num frames 13000...
[2025-04-29 03:44:35,708][03043] Num frames 13100...
[2025-04-29 03:44:35,862][03043] Num frames 13200...
[2025-04-29 03:44:35,990][03043] Num frames 13300...
[2025-04-29 03:44:36,115][03043] Num frames 13400...
[2025-04-29 03:44:36,247][03043] Num frames 13500...
[2025-04-29 03:44:36,389][03043] Num frames 13600...
[2025-04-29 03:44:36,518][03043] Num frames 13700...
[2025-04-29 03:44:36,669][03043] Avg episode rewards: #0: 34.774, true rewards: #0: 13.774
[2025-04-29 03:44:36,670][03043] Avg episode reward: 34.774, avg true_objective: 13.774
[2025-04-29 03:45:55,051][03043] Replay video saved to /content/train_dir/default_experiment/replay.mp4!