File size: 14,321 Bytes
18c076f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
from google.colab import drive
import os
import glob
import torch
import torch.nn as nn
import torch.optim as optim
import pdfplumber
import random
import math
from tqdm import tqdm
from transformers import AutoTokenizer
from torch.utils.data import DataLoader, Dataset, random_split
from torch.cuda.amp import autocast, GradScaler  # Fixed import
from huggingface_hub import login
from torch.utils.tensorboard import SummaryWriter
import logging
from typing import Tuple, List, Dict

# Configuration
class Config:
    # Model
    D_MODEL = 512
    NHEAD = 8
    ENC_LAYERS = 6
    DEC_LAYERS = 6
    DIM_FEEDFORWARD = 2048
    DROPOUT = 0.1
    
    # Training
    BATCH_SIZE = 4
    GRAD_ACCUM_STEPS = 2
    LR = 1e-4
    EPOCHS = 20
    MAX_GRAD_NORM = 1.0
    
    # Data
    INPUT_MAX_LEN = 512
    SUMMARY_MAX_LEN = 128
    CHUNK_SIZE = 512
    
    # Paths
    CHECKPOINT_DIR = "/content/drive/MyDrive/legal_summarization_checkpoints_6"
    LOG_DIR = os.path.join(CHECKPOINT_DIR, "logs")
    
    @classmethod
    def setup_paths(cls):
        os.makedirs(cls.CHECKPOINT_DIR, exist_ok=True)
        os.makedirs(cls.LOG_DIR, exist_ok=True)

# Initialize config
Config.setup_paths()

# Setup logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler(os.path.join(Config.LOG_DIR, 'training.log')),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(_name_)

# Authenticate Hugging Face
login(token="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")

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Mount Google Drive
drive.mount('/content/drive', force_remount=True)

# Tokenizer
tokenizer = AutoTokenizer.from_pretrained("t5-small")
vocab_size = tokenizer.vocab_size

# TensorBoard
writer = SummaryWriter(Config.LOG_DIR)

def clean_text(text: str) -> str:
    """Basic text cleaning"""
    text = ' '.join(text.split())  # Remove extra whitespace
    return text.strip()

def extract_text_from_pdf(pdf_path: str, chunk_size: int = Config.CHUNK_SIZE) -> List[str]:
    """Extract and chunk text from PDF with error handling"""
    text = ''
    try:
        with pdfplumber.open(pdf_path) as pdf:
            for page in pdf.pages:
                page_text = page.extract_text() or ''
                text += page_text + ' '
    except Exception as e:
        logger.warning(f"Error processing {pdf_path}: {str(e)}")
        return []
    
    text = clean_text(text)
    words = text.split()
    return [' '.join(words[i:i+chunk_size]) for i in range(0, len(words), chunk_size)] if words else []

def load_texts_from_folder(folder_path: str, chunk_size: int = Config.CHUNK_SIZE) -> List[str]:
    """Load and chunk texts from folder with multiple file types"""
    texts = []
    for fname in sorted(os.listdir(folder_path)):
        path = os.path.join(folder_path, fname)
        try:
            if path.endswith('.pdf'):
                chunks = extract_text_from_pdf(path, chunk_size)
                if chunks:
                    texts.extend(chunks)
            else:
                with open(path, 'r', encoding='utf-8', errors='ignore') as f:
                    content = clean_text(f.read())
                    if content:
                        texts.extend([content[i:i+chunk_size] for i in range(0, len(content), chunk_size)])
        except Exception as e:
            logger.warning(f"Error loading {path}: {str(e)}")
            continue
    return texts

class LegalDataset(Dataset):
    def _init_(self, texts: List[str], summaries: List[str], tokenizer: AutoTokenizer, 

                 input_max_len: int = Config.INPUT_MAX_LEN, 

                 summary_max_len: int = Config.SUMMARY_MAX_LEN):
        assert len(texts) == len(summaries), "Texts and summaries must be same length"
        self.texts = texts
        self.summaries = summaries
        self.tokenizer = tokenizer
        self.input_max_len = input_max_len
        self.summary_max_len = summary_max_len

    def _len_(self):
        return len(self.texts)

    def _getitem_(self, idx):
        src = self.texts[idx]
        tgt = self.summaries[idx]
        
        enc = self.tokenizer(
            src, 
            padding='max_length', 
            truncation=True, 
            max_length=self.input_max_len, 
            return_tensors='pt'
        )
        
        dec = self.tokenizer(
            tgt, 
            padding='max_length', 
            truncation=True, 
            max_length=self.summary_max_len, 
            return_tensors='pt'
        )
        
        return {
            'input_ids': enc.input_ids.squeeze(),
            'attention_mask': enc.attention_mask.squeeze(),
            'labels': dec.input_ids.squeeze()
        }

class PositionalEncoding(nn.Module):
    def _init_(self, d_model: int, dropout: float = 0.1, max_len: int = 1024):
        super()._init_()
        self.dropout = nn.Dropout(dropout)
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len).unsqueeze(1).float()
        div = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div)
        pe[:, 1::2] = torch.cos(position * div)
        self.register_buffer('pe', pe.unsqueeze(0))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = x + self.pe[:, :x.size(1)]
        return self.dropout(x)

class CustomTransformer(nn.Module):
    def _init_(self, vocab_size: int, d_model: int = Config.D_MODEL, nhead: int = Config.NHEAD, 

                 enc_layers: int = Config.ENC_LAYERS, dec_layers: int = Config.DEC_LAYERS, 

                 dim_feedforward: int = Config.DIM_FEEDFORWARD, dropout: float = Config.DROPOUT):
        super()._init_()
        self.embed = nn.Embedding(vocab_size, d_model)
        self.pos_enc = PositionalEncoding(d_model, dropout)
        self.transformer = nn.Transformer(
            d_model=d_model,
            nhead=nhead,
            num_encoder_layers=enc_layers,
            num_decoder_layers=dec_layers,
            dim_feedforward=dim_feedforward,
            dropout=dropout,
            batch_first=True
        )
        self.fc = nn.Linear(d_model, vocab_size)
        
        # Initialize weights
        self._init_weights()

    def _init_weights(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def forward(self, src_ids: torch.Tensor, tgt_ids: torch.Tensor, 

                src_key_padding_mask: torch.Tensor = None, 

                tgt_key_padding_mask: torch.Tensor = None) -> torch.Tensor:
        
        # Create causal mask for decoder
        tgt_mask = nn.Transformer.generate_square_subsequent_mask(tgt_ids.size(1)).to(tgt_ids.device)
        
        src = self.pos_enc(self.embed(src_ids))
        tgt = self.pos_enc(self.embed(tgt_ids))
        
        out = self.transformer(
            src, tgt,
            tgt_mask=tgt_mask,
            src_key_padding_mask=src_key_padding_mask,
            tgt_key_padding_mask=tgt_key_padding_mask,
            memory_key_padding_mask=src_key_padding_mask
        )
        return self.fc(out)

def create_masks(input_ids: torch.Tensor, decoder_input: torch.Tensor, pad_token_id: int) -> Tuple[torch.Tensor, torch.Tensor]:
    """Create padding masks for transformer"""
    src_pad_mask = (input_ids == pad_token_id)
    tgt_pad_mask = (decoder_input == pad_token_id)
    return src_pad_mask, tgt_pad_mask

def train_model(model: nn.Module, train_loader: DataLoader, val_loader: DataLoader, 

                optimizer: optim.Optimizer, criterion: nn.Module, device: torch.device, 

                epochs: int = Config.EPOCHS, grad_accum_steps: int = Config.GRAD_ACCUM_STEPS):
    
    model.to(device)
    scaler = GradScaler()
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=2, factor=0.5)
    best_val_loss = float('inf')
    early_stop_counter = 0
    
    for epoch in range(1, epochs + 1):
        model.train()
        train_loss = 0
        progress_bar = tqdm(train_loader, desc=f"Epoch {epoch}/{epochs}")
        
        for step, batch in enumerate(progress_bar, 1):
            input_ids = batch['input_ids'].to(device)
            attn_mask = batch['attention_mask'].to(device)
            labels = batch['labels'].to(device)
            
            # Prepare decoder input with <pad> as start
            decoder_input = torch.cat([
                torch.full((labels.size(0), 1), tokenizer.pad_token_id, dtype=torch.long, device=device), 
                labels[:, :-1]
            ], dim=1)
            
            # Create masks
            src_pad_mask, tgt_pad_mask = create_masks(input_ids, decoder_input, tokenizer.pad_token_id)
            
            with autocast():
                outputs = model(
                    input_ids, 
                    decoder_input,
                    src_key_padding_mask=src_pad_mask,
                    tgt_key_padding_mask=tgt_pad_mask
                )
                loss = criterion(outputs.view(-1, outputs.size(-1)), labels.view(-1))
                loss = loss / grad_accum_steps
            
            scaler.scale(loss).backward()
            
            if step % grad_accum_steps == 0:
                scaler.unscale_(optimizer)
                nn.utils.clip_grad_norm_(model.parameters(), Config.MAX_GRAD_NORM)
                scaler.step(optimizer)
                scaler.update()
                optimizer.zero_grad()
            
            train_loss += loss.item() * grad_accum_steps
            progress_bar.set_postfix({'train_loss': f"{loss.item():.4f}"})
        
        avg_train_loss = train_loss / len(train_loader)
        writer.add_scalar('Loss/train', avg_train_loss, epoch)
        logger.info(f"Epoch {epoch} Train Loss: {avg_train_loss:.4f}")
        
        # Validation
        model.eval()
        val_loss = 0
        with torch.no_grad():
            for batch in tqdm(val_loader, desc="Validating"):
                input_ids = batch['input_ids'].to(device)
                labels = batch['labels'].to(device)
                decoder_input = torch.cat([
                    torch.full((labels.size(0), 1), tokenizer.pad_token_id, dtype=torch.long, device=device), 
                    labels[:, :-1]
                ], dim=1)
                
                src_pad_mask, tgt_pad_mask = create_masks(input_ids, decoder_input, tokenizer.pad_token_id)
                
                with autocast():
                    outputs = model(
                        input_ids, 
                        decoder_input,
                        src_key_padding_mask=src_pad_mask,
                        tgt_key_padding_mask=tgt_pad_mask
                    )
                    loss = criterion(outputs.view(-1, outputs.size(-1)), labels.view(-1))
                    val_loss += loss.item()
        
        avg_val_loss = val_loss / len(val_loader)
        writer.add_scalar('Loss/val', avg_val_loss, epoch)
        logger.info(f"Epoch {epoch} Val Loss: {avg_val_loss:.4f}")
        
        # Learning rate scheduling
        scheduler.step(avg_val_loss)
        
        # Early stopping & checkpointing
        if avg_val_loss < best_val_loss:
            best_val_loss = avg_val_loss
            early_stop_counter = 0
            # Save best model
            ckpt_path = os.path.join(Config.CHECKPOINT_DIR, f"transformer_best.pt")
            torch.save(model.state_dict(), ckpt_path)
            logger.info(f"New best model saved with val loss: {best_val_loss:.4f}")
        else:
            early_stop_counter += 1
            if early_stop_counter >= 3:
                logger.info("Early stopping triggered")
                break
        
        # Save regular checkpoint
        ckpt_path = os.path.join(Config.CHECKPOINT_DIR, f"transformer_epoch_{epoch}.pt")
        torch.save(model.state_dict(), ckpt_path)
        
        # Keep only latest 2 checkpoints
        manage_checkpoints()

def manage_checkpoints():
    """Keep only the 2 most recent checkpoints"""
    files = sorted(glob.glob(os.path.join(Config.CHECKPOINT_DIR, "transformer_epoch_*.pt")), key=os.path.getctime)
    if len(files) > 2:
        for old in files[:-2]:
            os.remove(old)
            logger.info(f"Removed old checkpoint: {old}")

if _name_ == "_main_":
    try:
        logger.info("Starting training process")
        
        # Load data
        logger.info("Loading texts and summaries")
        texts = load_texts_from_folder("/content/drive/MyDrive/dataset/IN-Abs/train-data/judgement")
        sums = load_texts_from_folder("/content/drive/MyDrive/dataset/IN-Abs/train-data/summary")
        
        if not texts or not sums:
            raise ValueError("No data loaded - check your input paths and files")
        
        logger.info(f"Loaded {len(texts)} text chunks and {len(sums)} summary chunks")
        
        # Create dataset
        full_ds = LegalDataset(texts, sums, tokenizer)
        
        # Train/val split
        val_size = int(0.1 * len(full_ds))
        train_size = len(full_ds) - val_size
        train_ds, val_ds = random_split(full_ds, [train_size, val_size])
        
        train_loader = DataLoader(train_ds, batch_size=Config.BATCH_SIZE, shuffle=True)
        val_loader = DataLoader(val_ds, batch_size=Config.BATCH_SIZE)
        
        # Initialize model
        model = CustomTransformer(vocab_size)
        optimizer = optim.Adam(model.parameters(), lr=Config.LR)
        criterion = nn.CrossEntropyLoss(ignore_index=tokenizer.pad_token_id)
        
        # Train
        train_model(model, train_loader, val_loader, optimizer, criterion, device)
        
        logger.info("Training completed successfully")
        
    except Exception as e:
        logger.error(f"Training failed: {str(e)}", exc_info=True)
        raise