File size: 14,321 Bytes
18c076f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
from google.colab import drive
import os
import glob
import torch
import torch.nn as nn
import torch.optim as optim
import pdfplumber
import random
import math
from tqdm import tqdm
from transformers import AutoTokenizer
from torch.utils.data import DataLoader, Dataset, random_split
from torch.cuda.amp import autocast, GradScaler # Fixed import
from huggingface_hub import login
from torch.utils.tensorboard import SummaryWriter
import logging
from typing import Tuple, List, Dict
# Configuration
class Config:
# Model
D_MODEL = 512
NHEAD = 8
ENC_LAYERS = 6
DEC_LAYERS = 6
DIM_FEEDFORWARD = 2048
DROPOUT = 0.1
# Training
BATCH_SIZE = 4
GRAD_ACCUM_STEPS = 2
LR = 1e-4
EPOCHS = 20
MAX_GRAD_NORM = 1.0
# Data
INPUT_MAX_LEN = 512
SUMMARY_MAX_LEN = 128
CHUNK_SIZE = 512
# Paths
CHECKPOINT_DIR = "/content/drive/MyDrive/legal_summarization_checkpoints_6"
LOG_DIR = os.path.join(CHECKPOINT_DIR, "logs")
@classmethod
def setup_paths(cls):
os.makedirs(cls.CHECKPOINT_DIR, exist_ok=True)
os.makedirs(cls.LOG_DIR, exist_ok=True)
# Initialize config
Config.setup_paths()
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(os.path.join(Config.LOG_DIR, 'training.log')),
logging.StreamHandler()
]
)
logger = logging.getLogger(_name_)
# Authenticate Hugging Face
login(token="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")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Mount Google Drive
drive.mount('/content/drive', force_remount=True)
# Tokenizer
tokenizer = AutoTokenizer.from_pretrained("t5-small")
vocab_size = tokenizer.vocab_size
# TensorBoard
writer = SummaryWriter(Config.LOG_DIR)
def clean_text(text: str) -> str:
"""Basic text cleaning"""
text = ' '.join(text.split()) # Remove extra whitespace
return text.strip()
def extract_text_from_pdf(pdf_path: str, chunk_size: int = Config.CHUNK_SIZE) -> List[str]:
"""Extract and chunk text from PDF with error handling"""
text = ''
try:
with pdfplumber.open(pdf_path) as pdf:
for page in pdf.pages:
page_text = page.extract_text() or ''
text += page_text + ' '
except Exception as e:
logger.warning(f"Error processing {pdf_path}: {str(e)}")
return []
text = clean_text(text)
words = text.split()
return [' '.join(words[i:i+chunk_size]) for i in range(0, len(words), chunk_size)] if words else []
def load_texts_from_folder(folder_path: str, chunk_size: int = Config.CHUNK_SIZE) -> List[str]:
"""Load and chunk texts from folder with multiple file types"""
texts = []
for fname in sorted(os.listdir(folder_path)):
path = os.path.join(folder_path, fname)
try:
if path.endswith('.pdf'):
chunks = extract_text_from_pdf(path, chunk_size)
if chunks:
texts.extend(chunks)
else:
with open(path, 'r', encoding='utf-8', errors='ignore') as f:
content = clean_text(f.read())
if content:
texts.extend([content[i:i+chunk_size] for i in range(0, len(content), chunk_size)])
except Exception as e:
logger.warning(f"Error loading {path}: {str(e)}")
continue
return texts
class LegalDataset(Dataset):
def _init_(self, texts: List[str], summaries: List[str], tokenizer: AutoTokenizer,
input_max_len: int = Config.INPUT_MAX_LEN,
summary_max_len: int = Config.SUMMARY_MAX_LEN):
assert len(texts) == len(summaries), "Texts and summaries must be same length"
self.texts = texts
self.summaries = summaries
self.tokenizer = tokenizer
self.input_max_len = input_max_len
self.summary_max_len = summary_max_len
def _len_(self):
return len(self.texts)
def _getitem_(self, idx):
src = self.texts[idx]
tgt = self.summaries[idx]
enc = self.tokenizer(
src,
padding='max_length',
truncation=True,
max_length=self.input_max_len,
return_tensors='pt'
)
dec = self.tokenizer(
tgt,
padding='max_length',
truncation=True,
max_length=self.summary_max_len,
return_tensors='pt'
)
return {
'input_ids': enc.input_ids.squeeze(),
'attention_mask': enc.attention_mask.squeeze(),
'labels': dec.input_ids.squeeze()
}
class PositionalEncoding(nn.Module):
def _init_(self, d_model: int, dropout: float = 0.1, max_len: int = 1024):
super()._init_()
self.dropout = nn.Dropout(dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1).float()
div = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div)
pe[:, 1::2] = torch.cos(position * div)
self.register_buffer('pe', pe.unsqueeze(0))
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x + self.pe[:, :x.size(1)]
return self.dropout(x)
class CustomTransformer(nn.Module):
def _init_(self, vocab_size: int, d_model: int = Config.D_MODEL, nhead: int = Config.NHEAD,
enc_layers: int = Config.ENC_LAYERS, dec_layers: int = Config.DEC_LAYERS,
dim_feedforward: int = Config.DIM_FEEDFORWARD, dropout: float = Config.DROPOUT):
super()._init_()
self.embed = nn.Embedding(vocab_size, d_model)
self.pos_enc = PositionalEncoding(d_model, dropout)
self.transformer = nn.Transformer(
d_model=d_model,
nhead=nhead,
num_encoder_layers=enc_layers,
num_decoder_layers=dec_layers,
dim_feedforward=dim_feedforward,
dropout=dropout,
batch_first=True
)
self.fc = nn.Linear(d_model, vocab_size)
# Initialize weights
self._init_weights()
def _init_weights(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, src_ids: torch.Tensor, tgt_ids: torch.Tensor,
src_key_padding_mask: torch.Tensor = None,
tgt_key_padding_mask: torch.Tensor = None) -> torch.Tensor:
# Create causal mask for decoder
tgt_mask = nn.Transformer.generate_square_subsequent_mask(tgt_ids.size(1)).to(tgt_ids.device)
src = self.pos_enc(self.embed(src_ids))
tgt = self.pos_enc(self.embed(tgt_ids))
out = self.transformer(
src, tgt,
tgt_mask=tgt_mask,
src_key_padding_mask=src_key_padding_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=src_key_padding_mask
)
return self.fc(out)
def create_masks(input_ids: torch.Tensor, decoder_input: torch.Tensor, pad_token_id: int) -> Tuple[torch.Tensor, torch.Tensor]:
"""Create padding masks for transformer"""
src_pad_mask = (input_ids == pad_token_id)
tgt_pad_mask = (decoder_input == pad_token_id)
return src_pad_mask, tgt_pad_mask
def train_model(model: nn.Module, train_loader: DataLoader, val_loader: DataLoader,
optimizer: optim.Optimizer, criterion: nn.Module, device: torch.device,
epochs: int = Config.EPOCHS, grad_accum_steps: int = Config.GRAD_ACCUM_STEPS):
model.to(device)
scaler = GradScaler()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=2, factor=0.5)
best_val_loss = float('inf')
early_stop_counter = 0
for epoch in range(1, epochs + 1):
model.train()
train_loss = 0
progress_bar = tqdm(train_loader, desc=f"Epoch {epoch}/{epochs}")
for step, batch in enumerate(progress_bar, 1):
input_ids = batch['input_ids'].to(device)
attn_mask = batch['attention_mask'].to(device)
labels = batch['labels'].to(device)
# Prepare decoder input with <pad> as start
decoder_input = torch.cat([
torch.full((labels.size(0), 1), tokenizer.pad_token_id, dtype=torch.long, device=device),
labels[:, :-1]
], dim=1)
# Create masks
src_pad_mask, tgt_pad_mask = create_masks(input_ids, decoder_input, tokenizer.pad_token_id)
with autocast():
outputs = model(
input_ids,
decoder_input,
src_key_padding_mask=src_pad_mask,
tgt_key_padding_mask=tgt_pad_mask
)
loss = criterion(outputs.view(-1, outputs.size(-1)), labels.view(-1))
loss = loss / grad_accum_steps
scaler.scale(loss).backward()
if step % grad_accum_steps == 0:
scaler.unscale_(optimizer)
nn.utils.clip_grad_norm_(model.parameters(), Config.MAX_GRAD_NORM)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
train_loss += loss.item() * grad_accum_steps
progress_bar.set_postfix({'train_loss': f"{loss.item():.4f}"})
avg_train_loss = train_loss / len(train_loader)
writer.add_scalar('Loss/train', avg_train_loss, epoch)
logger.info(f"Epoch {epoch} Train Loss: {avg_train_loss:.4f}")
# Validation
model.eval()
val_loss = 0
with torch.no_grad():
for batch in tqdm(val_loader, desc="Validating"):
input_ids = batch['input_ids'].to(device)
labels = batch['labels'].to(device)
decoder_input = torch.cat([
torch.full((labels.size(0), 1), tokenizer.pad_token_id, dtype=torch.long, device=device),
labels[:, :-1]
], dim=1)
src_pad_mask, tgt_pad_mask = create_masks(input_ids, decoder_input, tokenizer.pad_token_id)
with autocast():
outputs = model(
input_ids,
decoder_input,
src_key_padding_mask=src_pad_mask,
tgt_key_padding_mask=tgt_pad_mask
)
loss = criterion(outputs.view(-1, outputs.size(-1)), labels.view(-1))
val_loss += loss.item()
avg_val_loss = val_loss / len(val_loader)
writer.add_scalar('Loss/val', avg_val_loss, epoch)
logger.info(f"Epoch {epoch} Val Loss: {avg_val_loss:.4f}")
# Learning rate scheduling
scheduler.step(avg_val_loss)
# Early stopping & checkpointing
if avg_val_loss < best_val_loss:
best_val_loss = avg_val_loss
early_stop_counter = 0
# Save best model
ckpt_path = os.path.join(Config.CHECKPOINT_DIR, f"transformer_best.pt")
torch.save(model.state_dict(), ckpt_path)
logger.info(f"New best model saved with val loss: {best_val_loss:.4f}")
else:
early_stop_counter += 1
if early_stop_counter >= 3:
logger.info("Early stopping triggered")
break
# Save regular checkpoint
ckpt_path = os.path.join(Config.CHECKPOINT_DIR, f"transformer_epoch_{epoch}.pt")
torch.save(model.state_dict(), ckpt_path)
# Keep only latest 2 checkpoints
manage_checkpoints()
def manage_checkpoints():
"""Keep only the 2 most recent checkpoints"""
files = sorted(glob.glob(os.path.join(Config.CHECKPOINT_DIR, "transformer_epoch_*.pt")), key=os.path.getctime)
if len(files) > 2:
for old in files[:-2]:
os.remove(old)
logger.info(f"Removed old checkpoint: {old}")
if _name_ == "_main_":
try:
logger.info("Starting training process")
# Load data
logger.info("Loading texts and summaries")
texts = load_texts_from_folder("/content/drive/MyDrive/dataset/IN-Abs/train-data/judgement")
sums = load_texts_from_folder("/content/drive/MyDrive/dataset/IN-Abs/train-data/summary")
if not texts or not sums:
raise ValueError("No data loaded - check your input paths and files")
logger.info(f"Loaded {len(texts)} text chunks and {len(sums)} summary chunks")
# Create dataset
full_ds = LegalDataset(texts, sums, tokenizer)
# Train/val split
val_size = int(0.1 * len(full_ds))
train_size = len(full_ds) - val_size
train_ds, val_ds = random_split(full_ds, [train_size, val_size])
train_loader = DataLoader(train_ds, batch_size=Config.BATCH_SIZE, shuffle=True)
val_loader = DataLoader(val_ds, batch_size=Config.BATCH_SIZE)
# Initialize model
model = CustomTransformer(vocab_size)
optimizer = optim.Adam(model.parameters(), lr=Config.LR)
criterion = nn.CrossEntropyLoss(ignore_index=tokenizer.pad_token_id)
# Train
train_model(model, train_loader, val_loader, optimizer, criterion, device)
logger.info("Training completed successfully")
except Exception as e:
logger.error(f"Training failed: {str(e)}", exc_info=True)
raise |