from google.colab import drive import os import glob import torch import torch.nn as nn import torch.optim as optim import pdfplumber import random import math from tqdm import tqdm from transformers import AutoTokenizer from torch.utils.data import DataLoader, Dataset, random_split from torch.cuda.amp import autocast, GradScaler # Fixed import from huggingface_hub import login from torch.utils.tensorboard import SummaryWriter import logging from typing import Tuple, List, Dict # Configuration class Config: # Model D_MODEL = 512 NHEAD = 8 ENC_LAYERS = 6 DEC_LAYERS = 6 DIM_FEEDFORWARD = 2048 DROPOUT = 0.1 # Training BATCH_SIZE = 4 GRAD_ACCUM_STEPS = 2 LR = 1e-4 EPOCHS = 20 MAX_GRAD_NORM = 1.0 # Data INPUT_MAX_LEN = 512 SUMMARY_MAX_LEN = 128 CHUNK_SIZE = 512 # Paths CHECKPOINT_DIR = "/content/drive/MyDrive/legal_summarization_checkpoints_6" LOG_DIR = os.path.join(CHECKPOINT_DIR, "logs") @classmethod def setup_paths(cls): os.makedirs(cls.CHECKPOINT_DIR, exist_ok=True) os.makedirs(cls.LOG_DIR, exist_ok=True) # Initialize config Config.setup_paths() # Setup logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', handlers=[ logging.FileHandler(os.path.join(Config.LOG_DIR, 'training.log')), logging.StreamHandler() ] ) logger = logging.getLogger(_name_) # Authenticate Hugging Face login(token="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") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Mount Google Drive drive.mount('/content/drive', force_remount=True) # Tokenizer tokenizer = AutoTokenizer.from_pretrained("t5-small") vocab_size = tokenizer.vocab_size # TensorBoard writer = SummaryWriter(Config.LOG_DIR) def clean_text(text: str) -> str: """Basic text cleaning""" text = ' '.join(text.split()) # Remove extra whitespace return text.strip() def extract_text_from_pdf(pdf_path: str, chunk_size: int = Config.CHUNK_SIZE) -> List[str]: """Extract and chunk text from PDF with error handling""" text = '' try: with pdfplumber.open(pdf_path) as pdf: for page in pdf.pages: page_text = page.extract_text() or '' text += page_text + ' ' except Exception as e: logger.warning(f"Error processing {pdf_path}: {str(e)}") return [] text = clean_text(text) words = text.split() return [' '.join(words[i:i+chunk_size]) for i in range(0, len(words), chunk_size)] if words else [] def load_texts_from_folder(folder_path: str, chunk_size: int = Config.CHUNK_SIZE) -> List[str]: """Load and chunk texts from folder with multiple file types""" texts = [] for fname in sorted(os.listdir(folder_path)): path = os.path.join(folder_path, fname) try: if path.endswith('.pdf'): chunks = extract_text_from_pdf(path, chunk_size) if chunks: texts.extend(chunks) else: with open(path, 'r', encoding='utf-8', errors='ignore') as f: content = clean_text(f.read()) if content: texts.extend([content[i:i+chunk_size] for i in range(0, len(content), chunk_size)]) except Exception as e: logger.warning(f"Error loading {path}: {str(e)}") continue return texts class LegalDataset(Dataset): def _init_(self, texts: List[str], summaries: List[str], tokenizer: AutoTokenizer, input_max_len: int = Config.INPUT_MAX_LEN, summary_max_len: int = Config.SUMMARY_MAX_LEN): assert len(texts) == len(summaries), "Texts and summaries must be same length" self.texts = texts self.summaries = summaries self.tokenizer = tokenizer self.input_max_len = input_max_len self.summary_max_len = summary_max_len def _len_(self): return len(self.texts) def _getitem_(self, idx): src = self.texts[idx] tgt = self.summaries[idx] enc = self.tokenizer( src, padding='max_length', truncation=True, max_length=self.input_max_len, return_tensors='pt' ) dec = self.tokenizer( tgt, padding='max_length', truncation=True, max_length=self.summary_max_len, return_tensors='pt' ) return { 'input_ids': enc.input_ids.squeeze(), 'attention_mask': enc.attention_mask.squeeze(), 'labels': dec.input_ids.squeeze() } class PositionalEncoding(nn.Module): def _init_(self, d_model: int, dropout: float = 0.1, max_len: int = 1024): super()._init_() self.dropout = nn.Dropout(dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len).unsqueeze(1).float() div = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div) pe[:, 1::2] = torch.cos(position * div) self.register_buffer('pe', pe.unsqueeze(0)) def forward(self, x: torch.Tensor) -> torch.Tensor: x = x + self.pe[:, :x.size(1)] return self.dropout(x) class CustomTransformer(nn.Module): def _init_(self, vocab_size: int, d_model: int = Config.D_MODEL, nhead: int = Config.NHEAD, enc_layers: int = Config.ENC_LAYERS, dec_layers: int = Config.DEC_LAYERS, dim_feedforward: int = Config.DIM_FEEDFORWARD, dropout: float = Config.DROPOUT): super()._init_() self.embed = nn.Embedding(vocab_size, d_model) self.pos_enc = PositionalEncoding(d_model, dropout) self.transformer = nn.Transformer( d_model=d_model, nhead=nhead, num_encoder_layers=enc_layers, num_decoder_layers=dec_layers, dim_feedforward=dim_feedforward, dropout=dropout, batch_first=True ) self.fc = nn.Linear(d_model, vocab_size) # Initialize weights self._init_weights() def _init_weights(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def forward(self, src_ids: torch.Tensor, tgt_ids: torch.Tensor, src_key_padding_mask: torch.Tensor = None, tgt_key_padding_mask: torch.Tensor = None) -> torch.Tensor: # Create causal mask for decoder tgt_mask = nn.Transformer.generate_square_subsequent_mask(tgt_ids.size(1)).to(tgt_ids.device) src = self.pos_enc(self.embed(src_ids)) tgt = self.pos_enc(self.embed(tgt_ids)) out = self.transformer( src, tgt, tgt_mask=tgt_mask, src_key_padding_mask=src_key_padding_mask, tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=src_key_padding_mask ) return self.fc(out) def create_masks(input_ids: torch.Tensor, decoder_input: torch.Tensor, pad_token_id: int) -> Tuple[torch.Tensor, torch.Tensor]: """Create padding masks for transformer""" src_pad_mask = (input_ids == pad_token_id) tgt_pad_mask = (decoder_input == pad_token_id) return src_pad_mask, tgt_pad_mask def train_model(model: nn.Module, train_loader: DataLoader, val_loader: DataLoader, optimizer: optim.Optimizer, criterion: nn.Module, device: torch.device, epochs: int = Config.EPOCHS, grad_accum_steps: int = Config.GRAD_ACCUM_STEPS): model.to(device) scaler = GradScaler() scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=2, factor=0.5) best_val_loss = float('inf') early_stop_counter = 0 for epoch in range(1, epochs + 1): model.train() train_loss = 0 progress_bar = tqdm(train_loader, desc=f"Epoch {epoch}/{epochs}") for step, batch in enumerate(progress_bar, 1): input_ids = batch['input_ids'].to(device) attn_mask = batch['attention_mask'].to(device) labels = batch['labels'].to(device) # Prepare decoder input with as start decoder_input = torch.cat([ torch.full((labels.size(0), 1), tokenizer.pad_token_id, dtype=torch.long, device=device), labels[:, :-1] ], dim=1) # Create masks src_pad_mask, tgt_pad_mask = create_masks(input_ids, decoder_input, tokenizer.pad_token_id) with autocast(): outputs = model( input_ids, decoder_input, src_key_padding_mask=src_pad_mask, tgt_key_padding_mask=tgt_pad_mask ) loss = criterion(outputs.view(-1, outputs.size(-1)), labels.view(-1)) loss = loss / grad_accum_steps scaler.scale(loss).backward() if step % grad_accum_steps == 0: scaler.unscale_(optimizer) nn.utils.clip_grad_norm_(model.parameters(), Config.MAX_GRAD_NORM) scaler.step(optimizer) scaler.update() optimizer.zero_grad() train_loss += loss.item() * grad_accum_steps progress_bar.set_postfix({'train_loss': f"{loss.item():.4f}"}) avg_train_loss = train_loss / len(train_loader) writer.add_scalar('Loss/train', avg_train_loss, epoch) logger.info(f"Epoch {epoch} Train Loss: {avg_train_loss:.4f}") # Validation model.eval() val_loss = 0 with torch.no_grad(): for batch in tqdm(val_loader, desc="Validating"): input_ids = batch['input_ids'].to(device) labels = batch['labels'].to(device) decoder_input = torch.cat([ torch.full((labels.size(0), 1), tokenizer.pad_token_id, dtype=torch.long, device=device), labels[:, :-1] ], dim=1) src_pad_mask, tgt_pad_mask = create_masks(input_ids, decoder_input, tokenizer.pad_token_id) with autocast(): outputs = model( input_ids, decoder_input, src_key_padding_mask=src_pad_mask, tgt_key_padding_mask=tgt_pad_mask ) loss = criterion(outputs.view(-1, outputs.size(-1)), labels.view(-1)) val_loss += loss.item() avg_val_loss = val_loss / len(val_loader) writer.add_scalar('Loss/val', avg_val_loss, epoch) logger.info(f"Epoch {epoch} Val Loss: {avg_val_loss:.4f}") # Learning rate scheduling scheduler.step(avg_val_loss) # Early stopping & checkpointing if avg_val_loss < best_val_loss: best_val_loss = avg_val_loss early_stop_counter = 0 # Save best model ckpt_path = os.path.join(Config.CHECKPOINT_DIR, f"transformer_best.pt") torch.save(model.state_dict(), ckpt_path) logger.info(f"New best model saved with val loss: {best_val_loss:.4f}") else: early_stop_counter += 1 if early_stop_counter >= 3: logger.info("Early stopping triggered") break # Save regular checkpoint ckpt_path = os.path.join(Config.CHECKPOINT_DIR, f"transformer_epoch_{epoch}.pt") torch.save(model.state_dict(), ckpt_path) # Keep only latest 2 checkpoints manage_checkpoints() def manage_checkpoints(): """Keep only the 2 most recent checkpoints""" files = sorted(glob.glob(os.path.join(Config.CHECKPOINT_DIR, "transformer_epoch_*.pt")), key=os.path.getctime) if len(files) > 2: for old in files[:-2]: os.remove(old) logger.info(f"Removed old checkpoint: {old}") if _name_ == "_main_": try: logger.info("Starting training process") # Load data logger.info("Loading texts and summaries") texts = load_texts_from_folder("/content/drive/MyDrive/dataset/IN-Abs/train-data/judgement") sums = load_texts_from_folder("/content/drive/MyDrive/dataset/IN-Abs/train-data/summary") if not texts or not sums: raise ValueError("No data loaded - check your input paths and files") logger.info(f"Loaded {len(texts)} text chunks and {len(sums)} summary chunks") # Create dataset full_ds = LegalDataset(texts, sums, tokenizer) # Train/val split val_size = int(0.1 * len(full_ds)) train_size = len(full_ds) - val_size train_ds, val_ds = random_split(full_ds, [train_size, val_size]) train_loader = DataLoader(train_ds, batch_size=Config.BATCH_SIZE, shuffle=True) val_loader = DataLoader(val_ds, batch_size=Config.BATCH_SIZE) # Initialize model model = CustomTransformer(vocab_size) optimizer = optim.Adam(model.parameters(), lr=Config.LR) criterion = nn.CrossEntropyLoss(ignore_index=tokenizer.pad_token_id) # Train train_model(model, train_loader, val_loader, optimizer, criterion, device) logger.info("Training completed successfully") except Exception as e: logger.error(f"Training failed: {str(e)}", exc_info=True) raise