--- language: - da license: mit model-index: - name: contract-ner-model-da results: - task: type: token-classification name: Token Classification widget: - "Medarbejderen ansættes til 35.000,00 kr. om måneden og arbejdsstedet er Supergaden 21, 2000 Frederiksberg." inference: parameters: aggregation_strategy: "first" --- # contract-ner-model-da This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on a custom contracts dataset. It achieves the following results on the evaluation set: - Loss: 0.0100 - Micro F1: 0.9074 - Micro F1 No Misc: 0.9074 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 4356 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Micro F1 | Micro F1 No Misc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----------------:| | 1.1722 | 4.88 | 200 | 0.0612 | 0.0 | 0.0 | | 0.0341 | 9.76 | 400 | 0.0209 | 0.0 | 0.0 | | 0.0158 | 14.63 | 600 | 0.0109 | 0.7233 | 0.7233 | | 0.0085 | 19.51 | 800 | 0.0097 | 0.7727 | 0.7727 | | 0.0057 | 24.39 | 1000 | 0.0084 | 0.8319 | 0.8319 | | 0.0041 | 29.27 | 1200 | 0.0085 | 0.8630 | 0.8630 | | 0.0031 | 34.15 | 1400 | 0.0089 | 0.8261 | 0.8261 | | 0.0023 | 39.02 | 1600 | 0.0066 | 0.8785 | 0.8785 | | 0.0017 | 43.9 | 1800 | 0.0106 | 0.8164 | 0.8164 | | 0.0012 | 48.78 | 2000 | 0.0092 | 0.8730 | 0.8730 | | 0.0008 | 53.66 | 2200 | 0.0076 | 0.8868 | 0.8868 | | 0.0007 | 58.54 | 2400 | 0.0075 | 0.9017 | 0.9017 | | 0.0005 | 63.41 | 2600 | 0.0096 | 0.8806 | 0.8806 | | 0.0004 | 68.29 | 2800 | 0.0094 | 0.8852 | 0.8852 | | 0.0004 | 73.17 | 3000 | 0.0084 | 0.9126 | 0.9126 | | 0.0003 | 78.05 | 3200 | 0.0083 | 0.8986 | 0.8986 | | 0.0003 | 82.93 | 3400 | 0.0093 | 0.9144 | 0.9144 | | 0.0003 | 87.8 | 3600 | 0.0088 | 0.9231 | 0.9231 | | 0.0001 | 92.68 | 3800 | 0.0080 | 0.9280 | 0.9280 | | 0.0002 | 97.56 | 4000 | 0.0100 | 0.9074 | 0.9074 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3