Commit
·
e619ab8
1
Parent(s):
840d8b3
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: verdict-classifier-trinary
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# verdict-classifier-trinary
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.1258
|
18 |
+
- F1 Macro: 0.8408
|
19 |
+
- F1 Misinformation: 0.9751
|
20 |
+
- F1 Factual: 0.9508
|
21 |
+
- F1 Other: 0.5965
|
22 |
+
- Prec Macro: 0.8323
|
23 |
+
- Prec Misinformation: 0.9818
|
24 |
+
- Prec Factual: 1.0
|
25 |
+
- Prec Other: 0.5152
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 2e-05
|
45 |
+
- train_batch_size: 4
|
46 |
+
- eval_batch_size: 4
|
47 |
+
- seed: 42
|
48 |
+
- gradient_accumulation_steps: 8
|
49 |
+
- total_train_batch_size: 32
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_steps: 462
|
53 |
+
- num_epochs: 1000
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Misinformation | F1 Factual | F1 Other | Prec Macro | Prec Misinformation | Prec Factual | Prec Other |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------------:|:----------:|:--------:|:----------:|:-------------------:|:------------:|:----------:|
|
59 |
+
| 1.034 | 0.98 | 57 | 0.9960 | 0.3136 | 0.9408 | 0.0 | 0.0 | 0.2961 | 0.8882 | 0.0 | 0.0 |
|
60 |
+
| 0.968 | 1.98 | 114 | 0.8945 | 0.3136 | 0.9408 | 0.0 | 0.0 | 0.2961 | 0.8882 | 0.0 | 0.0 |
|
61 |
+
| 0.9253 | 2.98 | 171 | 0.7182 | 0.3136 | 0.9408 | 0.0 | 0.0 | 0.2961 | 0.8882 | 0.0 | 0.0 |
|
62 |
+
| 0.8215 | 3.98 | 228 | 0.3112 | 0.4795 | 0.9454 | 0.0 | 0.4932 | 0.4351 | 0.9381 | 0.0 | 0.3673 |
|
63 |
+
| 0.5073 | 4.98 | 285 | 0.1564 | 0.8272 | 0.9703 | 0.9355 | 0.5758 | 0.8025 | 0.9883 | 0.9667 | 0.4524 |
|
64 |
+
| 0.3046 | 5.98 | 342 | 0.1258 | 0.8408 | 0.9751 | 0.9508 | 0.5965 | 0.8323 | 0.9818 | 1.0 | 0.5152 |
|
65 |
+
| 0.1971 | 6.98 | 399 | 0.1540 | 0.8458 | 0.9796 | 0.9538 | 0.6038 | 0.8258 | 0.9863 | 0.9394 | 0.5517 |
|
66 |
+
| 0.1494 | 7.98 | 456 | 0.1779 | 0.8504 | 0.9737 | 0.9524 | 0.625 | 0.8195 | 0.9907 | 0.9677 | 0.5 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.11.3
|
72 |
+
- Pytorch 1.9.0+cu102
|
73 |
+
- Datasets 1.9.0
|
74 |
+
- Tokenizers 0.10.2
|