File size: 2,812 Bytes
195c7c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---

library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: w2v-bert-2.0-czech-colab-CV17.0
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_17_0
      type: common_voice_17_0
      config: cs
      split: test
      args: cs
    metrics:
    - name: Wer
      type: wer
      value: 0.05608571906914448
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v-bert-2.0-czech-colab-CV17.0

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_17_0 dataset.

It achieves the following results on the evaluation set:

- Loss: 0.1030

- Wer: 0.0561



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- lr_scheduler_warmup_steps: 500
- num_epochs: 10

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch  | Step | Validation Loss | Wer    |

|:-------------:|:------:|:----:|:---------------:|:------:|

| 1.6496        | 0.6579 | 300  | 0.1459          | 0.1211 |

| 0.0878        | 1.3158 | 600  | 0.1426          | 0.1034 |

| 0.0713        | 1.9737 | 900  | 0.1136          | 0.0925 |

| 0.0478        | 2.6316 | 1200 | 0.1084          | 0.0815 |

| 0.04          | 3.2895 | 1500 | 0.0980          | 0.0778 |

| 0.0309        | 3.9474 | 1800 | 0.0973          | 0.0723 |

| 0.0218        | 4.6053 | 2100 | 0.1035          | 0.0681 |

| 0.0218        | 5.2632 | 2400 | 0.0997          | 0.0658 |

| 0.0157        | 5.9211 | 2700 | 0.0924          | 0.0693 |

| 0.012         | 6.5789 | 3000 | 0.0957          | 0.0621 |

| 0.0103        | 7.2368 | 3300 | 0.0985          | 0.0623 |

| 0.0082        | 7.8947 | 3600 | 0.0942          | 0.0594 |

| 0.0051        | 8.5526 | 3900 | 0.1028          | 0.0569 |

| 0.0042        | 9.2105 | 4200 | 0.1021          | 0.0567 |

| 0.0031        | 9.8684 | 4500 | 0.1030          | 0.0561 |





### Framework versions



- Transformers 4.45.2

- Pytorch 2.5.1

- Datasets 2.19.1

- Tokenizers 0.20.1