safora commited on
Commit
9253276
·
verified ·
1 Parent(s): 4ea3b34

Update README.md

Browse files

readme update based on the code

Files changed (1) hide show
  1. README.md +216 -161
README.md CHANGED
@@ -1,199 +1,254 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
 
 
 
 
35
 
36
- ## Uses
 
 
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
39
 
40
- ### Direct Use
 
 
 
 
 
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
43
 
44
- [More Information Needed]
 
 
 
 
45
 
46
- ### Downstream Use [optional]
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
 
57
 
58
- ## Bias, Risks, and Limitations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language: fa
3
+ base_model: Qwen/Qwen2.5-14B-Instruct
4
+ datasets:
5
+ - safora/PersianSciQA-Extractive
6
+ tags:
7
+ - qwen
8
+ - question-answering
9
+ - persian
10
+ - farsi
11
+ - qlora
12
+ - scientific-documents
13
+ license: apache-2.0
14
  ---
15
 
16
+ # PersianSciQA-Qwen2.5-14B: A QLoRA Fine-Tuned Model for Scientific Extractive QA in Persian
17
 
18
+ ## Model Description
19
 
20
+ This repository contains the **PersianSciQA-Qwen2.5-14B** model, a fine-tuned version of `Qwen/Qwen2.5-14B-Instruct` specialized for **extractive question answering on scientific texts in the Persian language**.
21
 
22
+ The model was trained using the QLoRA method for efficient parameter-tuning. Its primary function is to analyze a given scientific `context` and answer a `question` based **solely** on the information within that context.
23
 
24
+ A key feature of its training is the strict instruction to output the exact phrase `CANNOT_ANSWER` if the context does not contain the information required to answer the question. This makes the model a reliable tool for closed-domain, evidence-based QA tasks.
25
 
26
+ ## How to Use
27
 
28
+ To use this model, you must follow the specific prompt template it was trained on. The prompt enforces the model's role as a scientific assistant and its strict answering policy.
29
 
30
+ Here is a complete example using the `transformers` library:
31
 
32
+ ```python
33
+ import torch
34
+ from transformers import AutoModelForCausalLM, AutoTokenizer
 
 
 
 
35
 
36
+ # Set the model ID
37
+ model_id = "safora/PersianSciQA-Qwen2.5-14B"
38
 
39
+ # Load the tokenizer and model
40
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
41
+ model = AutoModelForCausalLM.from_pretrained(
42
+ model_id,
43
+ torch_dtype=torch.bfloat16,
44
+ device_map="auto"
45
+ )
46
 
47
+ # 1. Define the prompt template (MUST match the training format)
48
+ prompt_template = (
49
+ 'شما یک دستیار متخصص در زمینه اسناد علمی هستید. وظیفه شما این است که به سوال پرسیده شده، **فقط و فقط** بر اساس متن زمینه (Context) ارائه شده پاسخ دهید. پاسخ شما باید دقیق و خلاصه باشد.\n\n'
50
+ '**دستورالعمل مهم:** اگر اطلاعات لازم برای پاسخ دادن به سوال در متن زمینه وجود ندارد، باید **دقیقا** عبارت "CANNOT_ANSWER" را به عنوان پاسخ بنویسید و هیچ توضیح اضافه‌ای ندهید.\n\n'
51
+ '**زمینه (Context):**\n---\n{context}\n---\n\n'
52
+ '**سوال (Question):**\n{question}\n\n'
53
+ '**پاسخ (Answer):** '
54
+ )
55
 
56
+ # 2. Provide your context and question
57
+ context = "سلول‌های خورشیدی پروسکایت به دلیل هزینه تولید پایین و بازدهی بالا، به عنوان یک فناوری نوظهور مورد توجه قرار گرفته‌اند. بازدهی آزمایشگاهی این سلول‌ها به بیش از ۲۵ درصد رسیده است، اما پایداری طولانی‌مدت آن‌ها همچنان یک چالش اصلی محسوب می‌شود."
58
+ question = "بازدهی سلول‌های خورشیدی پروسکایت در آزمایشگاه چقدر است؟"
59
+ # Example of a question that cannot be answered from the context:
60
+ # question = "این سلول ها اولین بار در چه سالی ساخته شدند؟"
61
 
62
+ # 3. Format the prompt
63
+ prompt = prompt_template.format(context=context, question=question)
64
 
65
+ # 4. Generate the response
66
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
67
+ generation_output = model.generate(
68
+ **inputs,
69
+ max_new_tokens=128,
70
+ eos_token_id=tokenizer.eos_token_id,
71
+ pad_token_id=tokenizer.eos_token_id
72
+ )
73
 
74
+ # Decode and print the output
75
+ response = tokenizer.decode(generation_output[0], skip_special_tokens=True)
76
 
77
+ # The generated text will be after the prompt
78
+ answer = response.split("**پاسخ (Answer):**")[-1].strip()
79
+ print(answer)
80
+ # Expected output: به بیش از ۲۵ درصد رسیده است
81
+ # For the unanswerable question, expected output: CANNOT_ANSWER
82
 
83
+ Training Details
84
+ Model
85
+ The base model is Qwen/Qwen2.5-14B-Instruct, a highly capable instruction-tuned large language model.
86
 
87
+ Dataset
88
+ The model was fine-tuned on the safora/PersianSciQA-Extractive dataset. This dataset contains triplets of (context, question, model_answer) derived from Persian scientific documents. The dataset is split into:
89
 
90
+ Train: Used for training the model.
91
 
92
+ Validation: Used for evaluating the model during training epochs.
93
 
94
+ Test: A held-out set reserved for final model evaluation.
95
 
96
+ Fine-Tuning Procedure
97
+ The model was fine-tuned using the QLoRA (Quantized Low-Rank Adaptation) method, which significantly reduces memory usage while maintaining high performance. The training was performed using the trl and peft libraries.
98
 
99
+ Hyperparameters
100
+ The following key hyperparameters were used during training:
101
+ Parameter Value
102
+ LoRA Configuration
103
+ r (Rank) 16
104
+ lora_alpha 32
105
+ lora_dropout 0.05
106
+ target_modules q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
107
+ Training Arguments
108
+ learning_rate 2e-5
109
+ optimizer paged_adamw_32bit
110
+ lr_scheduler_type cosine
111
+ num_train_epochs 1
112
+ per_device_train_batch_size 1
113
+ gradient_accumulation_steps 8
114
+ effective_batch_size 8
115
+ quantization 4-bit (nf4)
116
+ compute_dtype bfloat16
117
 
118
+ Of course. Based on your Python script, here is a professional, scientific, and community-focused README.md file for your Hugging Face model card. This is designed for maximum clarity and reusability.
119
 
120
+ Markdown
121
 
122
+ ---
123
+ language: fa
124
+ base_model: Qwen/Qwen2.5-14B-Instruct
125
+ datasets:
126
+ - safora/PersianSciQA-Extractive
127
+ tags:
128
+ - qwen
129
+ - question-answering
130
+ - persian
131
+ - farsi
132
+ - qlora
133
+ - scientific-documents
134
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135
 
136
+ # PersianSciQA-Qwen2.5-14B: A QLoRA Fine-Tuned Model for Scientific Extractive QA in Persian
137
 
138
+ ## Model Description
139
 
140
+ This repository contains the **PersianSciQA-Qwen2.5-14B** model, a fine-tuned version of `Qwen/Qwen2.5-14B-Instruct` specialized for **extractive question answering on scientific texts in the Persian language**.
141
 
142
+ The model was trained using the QLoRA method for efficient parameter-tuning. Its primary function is to analyze a given scientific `context` and answer a `question` based **solely** on the information within that context.
143
 
144
+ A key feature of its training is the strict instruction to output the exact phrase `CANNOT_ANSWER` if the context does not contain the information required to answer the question. This makes the model a reliable tool for closed-domain, evidence-based QA tasks.
145
 
146
+ ## How to Use
147
 
148
+ To use this model, you must follow the specific prompt template it was trained on. The prompt enforces the model's role as a scientific assistant and its strict answering policy.
149
 
150
+ Here is a complete example using the `transformers` library:
151
 
152
+ ```python
153
+ import torch
154
+ from transformers import AutoModelForCausalLM, AutoTokenizer
155
+
156
+ # Set the model ID
157
+ model_id = "safora/PersianSciQA-Qwen2.5-14B"
158
+
159
+ # Load the tokenizer and model
160
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
161
+ model = AutoModelForCausalLM.from_pretrained(
162
+ model_id,
163
+ torch_dtype=torch.bfloat16,
164
+ device_map="auto"
165
+ )
166
+
167
+ # 1. Define the prompt template (MUST match the training format)
168
+ prompt_template = (
169
+ 'شما یک دستیار متخصص در زمینه اسناد علمی هستید. وظیفه شما این است که به سوال پرسیده شده، **فقط و فقط** بر اساس متن زمینه (Context) ارائه شده پاسخ دهید. پاسخ شما باید دقیق و خلاصه باشد.\n\n'
170
+ '**دستورالعمل مهم:** اگر اطلاعات لازم برای پاسخ دادن به سوال در متن زمینه وجود ندارد، باید **دقیقا** عبارت "CANNOT_ANSWER" را به عنوان پاسخ بنویسید و هیچ توضیح اضافه‌ای ندهید.\n\n'
171
+ '**زمینه (Context):**\n---\n{context}\n---\n\n'
172
+ '**سوال (Question):**\n{question}\n\n'
173
+ '**پاسخ (Answer):** '
174
+ )
175
+
176
+ # 2. Provide your context and question
177
+ context = "سلول‌های خورشیدی پروسکایت به دلیل هزینه تولید پایین و بازدهی بالا، به عنوان یک فناوری نوظهور مورد توجه قرار گرفته‌اند. بازدهی آزمایشگاهی این سلول‌ها به بیش از ۲۵ درصد رسیده است، اما پایداری طولانی‌مدت آن‌ها همچنان یک چالش اصلی محسوب می‌شود."
178
+ question = "بازدهی سلول‌های خورشیدی پروسکایت در آزمایشگاه چقدر است؟"
179
+ # Example of a question that cannot be answered from the context:
180
+ # question = "این سلول ها اولین بار در چه سالی ساخته شدند؟"
181
+
182
+ # 3. Format the prompt
183
+ prompt = prompt_template.format(context=context, question=question)
184
+
185
+ # 4. Generate the response
186
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
187
+ generation_output = model.generate(
188
+ **inputs,
189
+ max_new_tokens=128,
190
+ eos_token_id=tokenizer.eos_token_id,
191
+ pad_token_id=tokenizer.eos_token_id
192
+ )
193
+
194
+ # Decode and print the output
195
+ response = tokenizer.decode(generation_output[0], skip_special_tokens=True)
196
+
197
+ # The generated text will be after the prompt
198
+ answer = response.split("**پاسخ (Answer):**")[-1].strip()
199
+ print(answer)
200
+ # Expected output: به بیش از ۲۵ درصد رسیده است
201
+ # For the unanswerable question, expected output: CANNOT_ANSWER
202
+ Training Details
203
+ Model
204
+ The base model is Qwen/Qwen2.5-14B-Instruct, a highly capable instruction-tuned large language model.
205
+
206
+ Dataset
207
+ The model was fine-tuned on the safora/PersianSciQA-Extractive dataset. This dataset contains triplets of (context, question, model_answer) derived from Persian scientific documents. The dataset is split into:
208
+
209
+ Train: Used for training the model.
210
+
211
+ Validation: Used for evaluating the model during training epochs.
212
+
213
+ Test: A held-out set reserved for final model evaluation.
214
+
215
+ Fine-Tuning Procedure
216
+ The model was fine-tuned using the QLoRA (Quantized Low-Rank Adaptation) method, which significantly reduces memory usage while maintaining high performance. The training was performed using the trl and peft libraries.
217
+
218
+ Hyperparameters
219
+ The following key hyperparameters were used during training:
220
+
221
+ Parameter Value
222
+ LoRA Configuration
223
+ r (Rank) 16
224
+ lora_alpha 32
225
+ lora_dropout 0.05
226
+ target_modules q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
227
+ Training Arguments
228
+ learning_rate 2e-5
229
+ optimizer paged_adamw_32bit
230
+ lr_scheduler_type cosine
231
+ num_train_epochs 1
232
+ per_device_train_batch_size 1
233
+ gradient_accumulation_steps 8
234
+ effective_batch_size 8
235
+ quantization 4-bit (nf4)
236
+ compute_dtype bfloat16
237
+
238
+
239
+ Evaluation
240
+ The model's performance has not yet been formally evaluated on the held-out test split. The test split of the safora/PersianSciQA-Extractive dataset, containing 1049 samples, is available for this purpose. Community contributions to evaluate and benchmark this model are welcome.
241
+
242
+ Citation
243
+ If you use this model in your research or work, please cite it as follows:
244
+
245
+ Code snippet
246
+
247
+ @misc{persiansciqa_qwen2.5_14b,
248
+ author = {jolfaei,safora},
249
+ title = {PersianSciQA-Qwen2.5-14B: A QLoRA Fine-Tuned Model for Scientific Extractive QA in Persian},
250
+ year = {2025},
251
+ publisher = {Hugging Face},
252
+ journal = {Hugging Face Model Hub},
253
+ howpublished = {\url{[https://huggingface.co/safora/PersianSciQA-Qwen2.5-14B](https://huggingface.co/safora/PersianSciQA-Qwen2.5-14B)}}
254
+ }