commit LunarLander model
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 274.55 +/- 9.76
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f42fb5be5e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f42fb5be670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f42fb5be700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f42fb5be790>", "_build": "<function ActorCriticPolicy._build at 0x7f42fb5be820>", "forward": "<function ActorCriticPolicy.forward at 0x7f42fb5be8b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f42fb5be940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f42fb5be9d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f42fb5bea60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f42fb5beaf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f42fb5beb80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f42fb5bf030>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 20, "num_timesteps": 1011000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672230569422637547, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAgAAAAAAADPQxbzDsUq67uoIPHMkmLZNHEM5y9yVtQAAgD8AAIA/s3tZPfYEd7qAr7K6Lml+ttDVsjrTdOU1AACAPwAAgD+ziQs9w617ujUX3DnlgMe7ULEFuwmIs7wAAIA/AACAP0acWj4pMM8+dKGDvbbSsL7L3Qk9chjgvAAAAAAAAAAAGvE2Pa7xjroTYt06mtFNtG5U37oSQf+5AACAPwAAgD8aqi29nD6/Pwgkir62jgE9o3eDvTfxM70AAAAAAAAAAKaEmT32hEK6v7stuMDriLXbtOW5MtdMNwAAgD8AAIA/ZhDjPCk4Y7ojrnA5La13tsxa0zqGeIm4AACAPwAAgD/Nj7U9UpDjuZ4UUjmiOFMzBNvHOt3FdLgAAIA/AACAPzMgsD1lfAY+dolpvqwsib7kA0S9+hW4vAAAAAAAAAAAZgAHPVyPQLqyCpq7+TQnOOF2dTuLIbo3AACAPwAAgD8AQN68KSw5upWy3DozMR619Bahu9fEALoAAIA/AACAP00Lo70pAES6DKwGOp5NV7Zjt2W7VIUbuQAAgD8AAIA/zZgHvGEY5zsckC09rnaCvqaUm7p5I4a9AAAAAAAAAACaJ3s89nxiumdcvLtJAjSznfrhOX0UZzMAAIA/AACAPzPReL3BqK49yvtSPr7bSr5cG5A9vri2PAAAAAAAAAAAZsbIu3vumbrmHHk6Yvz5NJJ4pbpvko25AACAPwAAgD9m1vi6e+KNutr2nbrguNq1zV7kOqj+tDkAAIA/AACAP2amJjzhjIi6zuq5Oyvxfjh2S1o6AooIuAAAgD8AAIA/musQPQpnf7m/qZo3i821Mqu3ADotv7O2AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxRLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksUhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.010999999999999899, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQnqKHCLiYkCUhpRSlIwBbJRN6AOMAXSUR0CMla4rjHXFdX2UKGgGaAloD0MItcNfkzXdY0CUhpRSlGgVTegDaBZHQIyYcVvddmh1fZQoaAZoCWgPQwit2jUhrY5mQJSGlFKUaBVN6ANoFkdAjKPK3NLUTnV9lChoBmgJaA9DCKhzRSkhZGFAlIaUUpRoFU3oA2gWR0CMpdWBBiTddX2UKGgGaAloD0MImYHK+HdnaECUhpRSlGgVTegDaBZHQIypM3n6l+F1fZQoaAZoCWgPQwhskh/xa2FwQJSGlFKUaBVNZgJoFkdAjKmNmlImPnV9lChoBmgJaA9DCLgf8MAAEGVAlIaUUpRoFU3oA2gWR0CMruJSBK+SdX2UKGgGaAloD0MI4h5LH7psZ0CUhpRSlGgVTegDaBZHQIywwT4+KTB1fZQoaAZoCWgPQwgjE/BrpBBoQJSGlFKUaBVN6ANoFkdAjLJ6K1og3nV9lChoBmgJaA9DCI0LB0Ky12NAlIaUUpRoFU3oA2gWR0CMtm2CNCJGdX2UKGgGaAloD0MI3IE65dG1b0CUhpRSlGgVTUoDaBZHQIy8FK5Cngp1fZQoaAZoCWgPQwhortNIS39oQJSGlFKUaBVN6ANoFkdAjMS47A+IM3V9lChoBmgJaA9DCG9FYoKab2dAlIaUUpRoFU3oA2gWR0CMy4F8ohIOdX2UKGgGaAloD0MIQWX8+8wQckCUhpRSlGgVTeADaBZHQIzR6uKXOW11fZQoaAZoCWgPQwjbMuAspbVvQJSGlFKUaBVNsAJoFkdAjNTUbLlmvnV9lChoBmgJaA9DCLn7HB8thmdAlIaUUpRoFU3oA2gWR0CM2Lle4TbndX2UKGgGaAloD0MIgCkDBzTfZECUhpRSlGgVTegDaBZHQI1HoZflZHN1fZQoaAZoCWgPQwiCWDZzyGJnQJSGlFKUaBVN6ANoFkdAjU4dIf8uSXV9lChoBmgJaA9DCNV1qKak32RAlIaUUpRoFU3oA2gWR0CNX2kxASnMdX2UKGgGaAloD0MIdGIP7WNpY0CUhpRSlGgVTegDaBZHQI1qzwYtQKt1fZQoaAZoCWgPQwiGG/D5YZtmQJSGlFKUaBVN6ANoFkdAjXQP5P/JeXV9lChoBmgJaA9DCCqPboRFCGRAlIaUUpRoFU3oA2gWR0CNd5jCpFTedX2UKGgGaAloD0MIIxYx7DBFZUCUhpRSlGgVTegDaBZHQI2GcJx//ed1fZQoaAZoCWgPQwgZOnZQiYphQJSGlFKUaBVN6ANoFkdAjYk1anrIHXV9lChoBmgJaA9DCIdtizKbvGRAlIaUUpRoFU3oA2gWR0CNjZ7655JLdX2UKGgGaAloD0MI2lazznhuZECUhpRSlGgVTegDaBZHQI2OCeZof0V1fZQoaAZoCWgPQwhnYroQq75gQJSGlFKUaBVN6ANoFkdAjZT3gccU/XV9lChoBmgJaA9DCLFNKhprr19AlIaUUpRoFU3oA2gWR0CNl2gpz90jdX2UKGgGaAloD0MIixagbTWVZ0CUhpRSlGgVTegDaBZHQI2ZhflZHNJ1fZQoaAZoCWgPQwhBfjZy3bhmQJSGlFKUaBVN6ANoFkdAjZ5kzwc5sHV9lChoBmgJaA9DCKvnpPcNNWNAlIaUUpRoFU3oA2gWR0CNpW9Htnf3dX2UKGgGaAloD0MIEmvxKQApZECUhpRSlGgVTegDaBZHQI2wUdDIBBB1fZQoaAZoCWgPQwgo0v2cAndmQJSGlFKUaBVN6ANoFkdAjbjRS5y2hXV9lChoBmgJaA9DCP8iaMykU2JAlIaUUpRoFU3oA2gWR0CNwKquKXOXdX2UKGgGaAloD0MI5J6u7tiyY0CUhpRSlGgVTegDaBZHQI3DyzPa+N91fZQoaAZoCWgPQwhv9DEfUClxQJSGlFKUaBVNvgFoFkdAjcQXd9Dx9XV9lChoBmgJaA9DCJs5JLXQF2NAlIaUUpRoFU3oA2gWR0CNyCPGyX2NdX2UKGgGaAloD0MIehfvx+3OYkCUhpRSlGgVTegDaBZHQI3UU0m+j/N1fZQoaAZoCWgPQwiXPJ6Wn3doQJSGlFKUaBVN6ANoFkdAjdpLRjSXt3V9lChoBmgJaA9DCAK8BRKUzGNAlIaUUpRoFU3oA2gWR0CN6Z212JSBdX2UKGgGaAloD0MID7VtGEVockCUhpRSlGgVTbUCaBZHQI3wXMINVip1fZQoaAZoCWgPQwiTGARWDg1lQJSGlFKUaBVN6ANoFkdAjfNRnvlU63V9lChoBmgJaA9DCOQvLeoT4mRAlIaUUpRoFU3oA2gWR0CN+wLaVUuMdX2UKGgGaAloD0MIamluhbBWZECUhpRSlGgVTegDaBZHQI394YUFjd51fZQoaAZoCWgPQwgibHh6JatyQJSGlFKUaBVNdwNoFkdAjgHdvsJID3V9lChoBmgJaA9DCDIcz2dAe15AlIaUUpRoFU3oA2gWR0COCwk2P1cudX2UKGgGaAloD0MI/+bFia+iYECUhpRSlGgVTegDaBZHQI4OdxjriVB1fZQoaAZoCWgPQwhwlpLlJF1kQJSGlFKUaBVN6ANoFkdAjhb5mAbyY3V9lChoBmgJaA9DCF7x1CONOmNAlIaUUpRoFU3oA2gWR0COGPMmF8G+dX2UKGgGaAloD0MIKZXwhN7qZECUhpRSlGgVTegDaBZHQI4dTO1OTJR1fZQoaAZoCWgPQwiAuKtXkUdiQJSGlFKUaBVN6ANoFkdAjiN2BBiTdXV9lChoBmgJaA9DCNsZprZUtmhAlIaUUpRoFU3oA2gWR0COLNpoK2KEdX2UKGgGaAloD0MIaqLPR5nSZ0CUhpRSlGgVTegDaBZHQI40DWbwz+F1fZQoaAZoCWgPQwhApN++ju5hQJSGlFKUaBVN6ANoFkdAjjrGY8dPtXV9lChoBmgJaA9DCHTS+8ZXD2RAlIaUUpRoFU3oA2gWR0COPYYl6Z6VdX2UKGgGaAloD0MIAvIlVPCRZ0CUhpRSlGgVTegDaBZHQI49xaePJaJ1fZQoaAZoCWgPQwi13QTftJpkQJSGlFKUaBVN6ANoFkdAjkFBZyMkyHV9lChoBmgJaA9DCFsMHqZ9T2JAlIaUUpRoFU3oA2gWR0COTRkDIRywdX2UKGgGaAloD0MImz3QCgz5X0CUhpRSlGgVTegDaBZHQI613vBrN4Z1fZQoaAZoCWgPQwihSzj0FklhQJSGlFKUaBVN6ANoFkdAjsY9rO7g9HV9lChoBmgJaA9DCN5YUBgUz2FAlIaUUpRoFU3oA2gWR0COzRmnwXqJdX2UKGgGaAloD0MIaVTgZJvwZ0CUhpRSlGgVTegDaBZHQI7QF58jRlZ1fZQoaAZoCWgPQwjWWMLaGA5oQJSGlFKUaBVN6ANoFkdAjtdzwtrbg3V9lChoBmgJaA9DCB2UMNP2/W9AlIaUUpRoFU3WA2gWR0CO2DeDWbw0dX2UKGgGaAloD0MIDYrmAay1ZECUhpRSlGgVTegDaBZHQI7eudmQKa51fZQoaAZoCWgPQwjHoX4XtkFlQJSGlFKUaBVN6ANoFkdAjui86V+qi3V9lChoBmgJaA9DCMxAZfx7K2hAlIaUUpRoFU3oA2gWR0CO7HaYeDFqdX2UKGgGaAloD0MInl+UoP/XcUCUhpRSlGgVTfQBaBZHQI7vJwuM+/x1fZQoaAZoCWgPQwj4GKw4VSxkQJSGlFKUaBVN6ANoFkdAjvWBRIjGDXV9lChoBmgJaA9DCNP3GoLjdGFAlIaUUpRoFU3oA2gWR0CO96NLDhtMdX2UKGgGaAloD0MIjlvMzw3bZECUhpRSlGgVTegDaBZHQI78cLlV94N1fZQoaAZoCWgPQwjsFoGxPrtnQJSGlFKUaBVN6ANoFkdAjwL+5OJtSHV9lChoBmgJaA9DCIgtPZpqeWtAlIaUUpRoFU1GA2gWR0CPCiR/3FkydX2UKGgGaAloD0MIEt4ehABkaECUhpRSlGgVTegDaBZHQI8Nihxo7FN1fZQoaAZoCWgPQwimtP6WgIJnQJSGlFKUaBVN6ANoFkdAjxU13t8eCHV9lChoBmgJaA9DCBFxcyoZOmlAlIaUUpRoFU3oA2gWR0CPHDpxm03PdX2UKGgGaAloD0MIFsPVARDXUECUhpRSlGgVS9RoFkdAjx6w9RrJsHV9lChoBmgJaA9DCDNqvko+K2VAlIaUUpRoFU3oA2gWR0CPHvkNnXd1dX2UKGgGaAloD0MIQKGePgJbYkCUhpRSlGgVTegDaBZHQI8ireGfwql1fZQoaAZoCWgPQwjvyi4YXH1nQJSGlFKUaBVN6ANoFkdAjzTrEk0JnnV9lChoBmgJaA9DCDtzDwnflWhAlIaUUpRoFU3oA2gWR0CPRamv4dp7dX2UKGgGaAloD0MIfjfdskOKXkCUhpRSlGgVTegDaBZHQI9MkAggX/J1fZQoaAZoCWgPQwhGmKJcGkNoQJSGlFKUaBVN6ANoFkdAj0+po9LYgHV9lChoBmgJaA9DCHMQdLSqVWhAlIaUUpRoFU3oA2gWR0CPVpNXYDkmdX2UKGgGaAloD0MIVWgglk3zZ0CUhpRSlGgVTegDaBZHQI9XQnOSntR1fZQoaAZoCWgPQwhF2safqJleQJSGlFKUaBVN6ANoFkdAj10RLCemN3V9lChoBmgJaA9DCEaZDTLJMGJAlIaUUpRoFU3oA2gWR0CPZgskpqh2dX2UKGgGaAloD0MIgQabOo/vY0CUhpRSlGgVTegDaBZHQI9pWCmMwUR1fZQoaAZoCWgPQwgdWfllsMliQJSGlFKUaBVN6ANoFkdAj2u6MR6F/XV9lChoBmgJaA9DCFTm5hvR12BAlIaUUpRoFU3oA2gWR0CPcVdadMCcdX2UKGgGaAloD0MIKVsk7UZQZkCUhpRSlGgVTegDaBZHQI9zNYKYzBR1fZQoaAZoCWgPQwgZqmIqfZZmQJSGlFKUaBVN6ANoFkdAj3elh5PdmHV9lChoBmgJaA9DCMQFoFE6S2JAlIaUUpRoFU3oA2gWR0CPis/+KjzqdX2UKGgGaAloD0MIIM8u3/qJZUCUhpRSlGgVTegDaBZHQI+QqeyzHCJ1fZQoaAZoCWgPQwghBrr2hShoQJSGlFKUaBVN6ANoFkdAj5v/aYeDF3V9lChoBmgJaA9DCPJ376ixumdAlIaUUpRoFU3oA2gWR0CPpZQdjoZAdX2UKGgGaAloD0MIkGltGlswYkCUhpRSlGgVTegDaBZHQI+pRydWhh91fZQoaAZoCWgPQwjKGYo7Xq1jQJSGlFKUaBVN6ANoFkdAj6mi0ngHeXV9lChoBmgJaA9DCOz7cJAQs2VAlIaUUpRoFU3oA2gWR0CPrp5ULlV+dX2UKGgGaAloD0MIQfM5d3t3cECUhpRSlGgVTT0CaBZHQI/Aep++dsl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100, "n_steps": 2022, "gamma": 0.999, "gae_lambda": 0.96, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 60, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef5420880961ef8d0356e3b31a8be0d05501f3699249cbce80a10217d36ffeb8
|
3 |
+
size 147390
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f42fb5be5e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f42fb5be670>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f42fb5be700>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f42fb5be790>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f42fb5be820>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f42fb5be8b0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f42fb5be940>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f42fb5be9d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f42fb5bea60>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f42fb5beaf0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f42fb5beb80>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f42fb5bf030>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 20,
|
45 |
+
"num_timesteps": 1011000,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1672230569422637547,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWV9QIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAgAAAAAAADPQxbzDsUq67uoIPHMkmLZNHEM5y9yVtQAAgD8AAIA/s3tZPfYEd7qAr7K6Lml+ttDVsjrTdOU1AACAPwAAgD+ziQs9w617ujUX3DnlgMe7ULEFuwmIs7wAAIA/AACAP0acWj4pMM8+dKGDvbbSsL7L3Qk9chjgvAAAAAAAAAAAGvE2Pa7xjroTYt06mtFNtG5U37oSQf+5AACAPwAAgD8aqi29nD6/Pwgkir62jgE9o3eDvTfxM70AAAAAAAAAAKaEmT32hEK6v7stuMDriLXbtOW5MtdMNwAAgD8AAIA/ZhDjPCk4Y7ojrnA5La13tsxa0zqGeIm4AACAPwAAgD/Nj7U9UpDjuZ4UUjmiOFMzBNvHOt3FdLgAAIA/AACAPzMgsD1lfAY+dolpvqwsib7kA0S9+hW4vAAAAAAAAAAAZgAHPVyPQLqyCpq7+TQnOOF2dTuLIbo3AACAPwAAgD8AQN68KSw5upWy3DozMR619Bahu9fEALoAAIA/AACAP00Lo70pAES6DKwGOp5NV7Zjt2W7VIUbuQAAgD8AAIA/zZgHvGEY5zsckC09rnaCvqaUm7p5I4a9AAAAAAAAAACaJ3s89nxiumdcvLtJAjSznfrhOX0UZzMAAIA/AACAPzPReL3BqK49yvtSPr7bSr5cG5A9vri2PAAAAAAAAAAAZsbIu3vumbrmHHk6Yvz5NJJ4pbpvko25AACAPwAAgD9m1vi6e+KNutr2nbrguNq1zV7kOqj+tDkAAIA/AACAP2amJjzhjIi6zuq5Oyvxfjh2S1o6AooIuAAAgD8AAIA/musQPQpnf7m/qZo3i821Mqu3ADotv7O2AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxRLCIaUjAFDlHSUUpQu"
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVhwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksUhZSMAUOUdJRSlC4="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.010999999999999899,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQnqKHCLiYkCUhpRSlIwBbJRN6AOMAXSUR0CMla4rjHXFdX2UKGgGaAloD0MItcNfkzXdY0CUhpRSlGgVTegDaBZHQIyYcVvddmh1fZQoaAZoCWgPQwit2jUhrY5mQJSGlFKUaBVN6ANoFkdAjKPK3NLUTnV9lChoBmgJaA9DCKhzRSkhZGFAlIaUUpRoFU3oA2gWR0CMpdWBBiTddX2UKGgGaAloD0MImYHK+HdnaECUhpRSlGgVTegDaBZHQIypM3n6l+F1fZQoaAZoCWgPQwhskh/xa2FwQJSGlFKUaBVNZgJoFkdAjKmNmlImPnV9lChoBmgJaA9DCLgf8MAAEGVAlIaUUpRoFU3oA2gWR0CMruJSBK+SdX2UKGgGaAloD0MI4h5LH7psZ0CUhpRSlGgVTegDaBZHQIywwT4+KTB1fZQoaAZoCWgPQwgjE/BrpBBoQJSGlFKUaBVN6ANoFkdAjLJ6K1og3nV9lChoBmgJaA9DCI0LB0Ky12NAlIaUUpRoFU3oA2gWR0CMtm2CNCJGdX2UKGgGaAloD0MI3IE65dG1b0CUhpRSlGgVTUoDaBZHQIy8FK5Cngp1fZQoaAZoCWgPQwhortNIS39oQJSGlFKUaBVN6ANoFkdAjMS47A+IM3V9lChoBmgJaA9DCG9FYoKab2dAlIaUUpRoFU3oA2gWR0CMy4F8ohIOdX2UKGgGaAloD0MIQWX8+8wQckCUhpRSlGgVTeADaBZHQIzR6uKXOW11fZQoaAZoCWgPQwjbMuAspbVvQJSGlFKUaBVNsAJoFkdAjNTUbLlmvnV9lChoBmgJaA9DCLn7HB8thmdAlIaUUpRoFU3oA2gWR0CM2Lle4TbndX2UKGgGaAloD0MIgCkDBzTfZECUhpRSlGgVTegDaBZHQI1HoZflZHN1fZQoaAZoCWgPQwiCWDZzyGJnQJSGlFKUaBVN6ANoFkdAjU4dIf8uSXV9lChoBmgJaA9DCNV1qKak32RAlIaUUpRoFU3oA2gWR0CNX2kxASnMdX2UKGgGaAloD0MIdGIP7WNpY0CUhpRSlGgVTegDaBZHQI1qzwYtQKt1fZQoaAZoCWgPQwiGG/D5YZtmQJSGlFKUaBVN6ANoFkdAjXQP5P/JeXV9lChoBmgJaA9DCCqPboRFCGRAlIaUUpRoFU3oA2gWR0CNd5jCpFTedX2UKGgGaAloD0MIIxYx7DBFZUCUhpRSlGgVTegDaBZHQI2GcJx//ed1fZQoaAZoCWgPQwgZOnZQiYphQJSGlFKUaBVN6ANoFkdAjYk1anrIHXV9lChoBmgJaA9DCIdtizKbvGRAlIaUUpRoFU3oA2gWR0CNjZ7655JLdX2UKGgGaAloD0MI2lazznhuZECUhpRSlGgVTegDaBZHQI2OCeZof0V1fZQoaAZoCWgPQwhnYroQq75gQJSGlFKUaBVN6ANoFkdAjZT3gccU/XV9lChoBmgJaA9DCLFNKhprr19AlIaUUpRoFU3oA2gWR0CNl2gpz90jdX2UKGgGaAloD0MIixagbTWVZ0CUhpRSlGgVTegDaBZHQI2ZhflZHNJ1fZQoaAZoCWgPQwhBfjZy3bhmQJSGlFKUaBVN6ANoFkdAjZ5kzwc5sHV9lChoBmgJaA9DCKvnpPcNNWNAlIaUUpRoFU3oA2gWR0CNpW9Htnf3dX2UKGgGaAloD0MIEmvxKQApZECUhpRSlGgVTegDaBZHQI2wUdDIBBB1fZQoaAZoCWgPQwgo0v2cAndmQJSGlFKUaBVN6ANoFkdAjbjRS5y2hXV9lChoBmgJaA9DCP8iaMykU2JAlIaUUpRoFU3oA2gWR0CNwKquKXOXdX2UKGgGaAloD0MI5J6u7tiyY0CUhpRSlGgVTegDaBZHQI3DyzPa+N91fZQoaAZoCWgPQwhv9DEfUClxQJSGlFKUaBVNvgFoFkdAjcQXd9Dx9XV9lChoBmgJaA9DCJs5JLXQF2NAlIaUUpRoFU3oA2gWR0CNyCPGyX2NdX2UKGgGaAloD0MIehfvx+3OYkCUhpRSlGgVTegDaBZHQI3UU0m+j/N1fZQoaAZoCWgPQwiXPJ6Wn3doQJSGlFKUaBVN6ANoFkdAjdpLRjSXt3V9lChoBmgJaA9DCAK8BRKUzGNAlIaUUpRoFU3oA2gWR0CN6Z212JSBdX2UKGgGaAloD0MID7VtGEVockCUhpRSlGgVTbUCaBZHQI3wXMINVip1fZQoaAZoCWgPQwiTGARWDg1lQJSGlFKUaBVN6ANoFkdAjfNRnvlU63V9lChoBmgJaA9DCOQvLeoT4mRAlIaUUpRoFU3oA2gWR0CN+wLaVUuMdX2UKGgGaAloD0MIamluhbBWZECUhpRSlGgVTegDaBZHQI394YUFjd51fZQoaAZoCWgPQwgibHh6JatyQJSGlFKUaBVNdwNoFkdAjgHdvsJID3V9lChoBmgJaA9DCDIcz2dAe15AlIaUUpRoFU3oA2gWR0COCwk2P1cudX2UKGgGaAloD0MI/+bFia+iYECUhpRSlGgVTegDaBZHQI4OdxjriVB1fZQoaAZoCWgPQwhwlpLlJF1kQJSGlFKUaBVN6ANoFkdAjhb5mAbyY3V9lChoBmgJaA9DCF7x1CONOmNAlIaUUpRoFU3oA2gWR0COGPMmF8G+dX2UKGgGaAloD0MIKZXwhN7qZECUhpRSlGgVTegDaBZHQI4dTO1OTJR1fZQoaAZoCWgPQwiAuKtXkUdiQJSGlFKUaBVN6ANoFkdAjiN2BBiTdXV9lChoBmgJaA9DCNsZprZUtmhAlIaUUpRoFU3oA2gWR0COLNpoK2KEdX2UKGgGaAloD0MIaqLPR5nSZ0CUhpRSlGgVTegDaBZHQI40DWbwz+F1fZQoaAZoCWgPQwhApN++ju5hQJSGlFKUaBVN6ANoFkdAjjrGY8dPtXV9lChoBmgJaA9DCHTS+8ZXD2RAlIaUUpRoFU3oA2gWR0COPYYl6Z6VdX2UKGgGaAloD0MIAvIlVPCRZ0CUhpRSlGgVTegDaBZHQI49xaePJaJ1fZQoaAZoCWgPQwi13QTftJpkQJSGlFKUaBVN6ANoFkdAjkFBZyMkyHV9lChoBmgJaA9DCFsMHqZ9T2JAlIaUUpRoFU3oA2gWR0COTRkDIRywdX2UKGgGaAloD0MImz3QCgz5X0CUhpRSlGgVTegDaBZHQI613vBrN4Z1fZQoaAZoCWgPQwihSzj0FklhQJSGlFKUaBVN6ANoFkdAjsY9rO7g9HV9lChoBmgJaA9DCN5YUBgUz2FAlIaUUpRoFU3oA2gWR0COzRmnwXqJdX2UKGgGaAloD0MIaVTgZJvwZ0CUhpRSlGgVTegDaBZHQI7QF58jRlZ1fZQoaAZoCWgPQwjWWMLaGA5oQJSGlFKUaBVN6ANoFkdAjtdzwtrbg3V9lChoBmgJaA9DCB2UMNP2/W9AlIaUUpRoFU3WA2gWR0CO2DeDWbw0dX2UKGgGaAloD0MIDYrmAay1ZECUhpRSlGgVTegDaBZHQI7eudmQKa51fZQoaAZoCWgPQwjHoX4XtkFlQJSGlFKUaBVN6ANoFkdAjui86V+qi3V9lChoBmgJaA9DCMxAZfx7K2hAlIaUUpRoFU3oA2gWR0CO7HaYeDFqdX2UKGgGaAloD0MInl+UoP/XcUCUhpRSlGgVTfQBaBZHQI7vJwuM+/x1fZQoaAZoCWgPQwj4GKw4VSxkQJSGlFKUaBVN6ANoFkdAjvWBRIjGDXV9lChoBmgJaA9DCNP3GoLjdGFAlIaUUpRoFU3oA2gWR0CO96NLDhtMdX2UKGgGaAloD0MIjlvMzw3bZECUhpRSlGgVTegDaBZHQI78cLlV94N1fZQoaAZoCWgPQwjsFoGxPrtnQJSGlFKUaBVN6ANoFkdAjwL+5OJtSHV9lChoBmgJaA9DCIgtPZpqeWtAlIaUUpRoFU1GA2gWR0CPCiR/3FkydX2UKGgGaAloD0MIEt4ehABkaECUhpRSlGgVTegDaBZHQI8Nihxo7FN1fZQoaAZoCWgPQwimtP6WgIJnQJSGlFKUaBVN6ANoFkdAjxU13t8eCHV9lChoBmgJaA9DCBFxcyoZOmlAlIaUUpRoFU3oA2gWR0CPHDpxm03PdX2UKGgGaAloD0MIFsPVARDXUECUhpRSlGgVS9RoFkdAjx6w9RrJsHV9lChoBmgJaA9DCDNqvko+K2VAlIaUUpRoFU3oA2gWR0CPHvkNnXd1dX2UKGgGaAloD0MIQKGePgJbYkCUhpRSlGgVTegDaBZHQI8ireGfwql1fZQoaAZoCWgPQwjvyi4YXH1nQJSGlFKUaBVN6ANoFkdAjzTrEk0JnnV9lChoBmgJaA9DCDtzDwnflWhAlIaUUpRoFU3oA2gWR0CPRamv4dp7dX2UKGgGaAloD0MIfjfdskOKXkCUhpRSlGgVTegDaBZHQI9MkAggX/J1fZQoaAZoCWgPQwhGmKJcGkNoQJSGlFKUaBVN6ANoFkdAj0+po9LYgHV9lChoBmgJaA9DCHMQdLSqVWhAlIaUUpRoFU3oA2gWR0CPVpNXYDkmdX2UKGgGaAloD0MIVWgglk3zZ0CUhpRSlGgVTegDaBZHQI9XQnOSntR1fZQoaAZoCWgPQwhF2safqJleQJSGlFKUaBVN6ANoFkdAj10RLCemN3V9lChoBmgJaA9DCEaZDTLJMGJAlIaUUpRoFU3oA2gWR0CPZgskpqh2dX2UKGgGaAloD0MIgQabOo/vY0CUhpRSlGgVTegDaBZHQI9pWCmMwUR1fZQoaAZoCWgPQwgdWfllsMliQJSGlFKUaBVN6ANoFkdAj2u6MR6F/XV9lChoBmgJaA9DCFTm5hvR12BAlIaUUpRoFU3oA2gWR0CPcVdadMCcdX2UKGgGaAloD0MIKVsk7UZQZkCUhpRSlGgVTegDaBZHQI9zNYKYzBR1fZQoaAZoCWgPQwgZqmIqfZZmQJSGlFKUaBVN6ANoFkdAj3elh5PdmHV9lChoBmgJaA9DCMQFoFE6S2JAlIaUUpRoFU3oA2gWR0CPis/+KjzqdX2UKGgGaAloD0MIIM8u3/qJZUCUhpRSlGgVTegDaBZHQI+QqeyzHCJ1fZQoaAZoCWgPQwghBrr2hShoQJSGlFKUaBVN6ANoFkdAj5v/aYeDF3V9lChoBmgJaA9DCPJ376ixumdAlIaUUpRoFU3oA2gWR0CPpZQdjoZAdX2UKGgGaAloD0MIkGltGlswYkCUhpRSlGgVTegDaBZHQI+pRydWhh91fZQoaAZoCWgPQwjKGYo7Xq1jQJSGlFKUaBVN6ANoFkdAj6mi0ngHeXV9lChoBmgJaA9DCOz7cJAQs2VAlIaUUpRoFU3oA2gWR0CPrp5ULlV+dX2UKGgGaAloD0MIQfM5d3t3cECUhpRSlGgVTT0CaBZHQI/Aep++dsl1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 100,
|
79 |
+
"n_steps": 2022,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.96,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 60,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce58418d0a27ea73105060e89a0699f59d1072514e2a4909833b69da89002dc2
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8be1102ae23509793657175117eda89c0096d06f3d58052b4657203bcea96c8b
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (241 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 274.55482990148914, "std_reward": 9.758951758215394, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-28T12:48:41.541484"}
|