sahil239 commited on
Commit
81fd850
Β·
verified Β·
1 Parent(s): 3187b82

Upload folder using huggingface_hub

Browse files
Files changed (2) hide show
  1. .ipynb_checkpoints/README-checkpoint.md +117 -0
  2. README.md +81 -171
.ipynb_checkpoints/README-checkpoint.md ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - chat
5
+ - chatbot
6
+ - LoRA
7
+ - instruction-tuning
8
+ - conversational
9
+ - tinyllama
10
+ - transformers
11
+ language:
12
+ - en
13
+ datasets:
14
+ - tatsu-lab/alpaca
15
+ - databricks/databricks-dolly-15k
16
+ - knkarthick/dialogsum
17
+ - Anthropic/hh-rlhf
18
+ - OpenAssistant/oasst1
19
+ - nomic-ai/gpt4all_prompt_generations
20
+ - sahil2801/CodeAlpaca-20k
21
+ - Open-Orca/OpenOrca
22
+ model-index:
23
+ - name: chatbot-v2
24
+ results: []
25
+ ---
26
+
27
+ # πŸ€– chatbot-v2 β€” TinyLLaMA Instruction-Tuned Chatbot (LoRA)
28
+
29
+ `chatbot-v2` is a lightweight, instruction-following conversational AI model based on **TinyLLaMA** and fine-tuned using **LoRA** adapters. It has been trained on a carefully curated mixture of open datasets covering assistant-like responses, code generation, summarization, safety alignment, and dialog reasoning.
30
+
31
+ This model is ideal for embedding into mobile or edge apps with low-resource inference needs or running via an API.
32
+
33
+ ---
34
+
35
+ ## 🧠 Base Model
36
+
37
+ - **Model**: [`TinyLlama/TinyLlama-1.1B-Chat`](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat)
38
+ - **Architecture**: Decoder-only Transformer (GPT-style)
39
+ - **Fine-tuning method**: LoRA (low-rank adapters)
40
+ - **LoRA Parameters**:
41
+ - `r=16`
42
+ - `alpha=32`
43
+ - `dropout=0.05`
44
+ - Target modules: `q_proj`, `v_proj`
45
+
46
+ ---
47
+
48
+ ## πŸ“š Training Datasets
49
+
50
+ The model was fine-tuned on the following instruction-following, summarization, and dialogue datasets:
51
+
52
+ - [`tatsu-lab/alpaca`](https://huggingface.co/datasets/tatsu-lab/alpaca) β€” Stanford Alpaca dataset
53
+ - [`databricks/databricks-dolly-15k`](https://huggingface.co/datasets/databricks/databricks-dolly-15k) β€” Dolly instruction data
54
+ - [`knkarthick/dialogsum`](https://huggingface.co/datasets/knkarthick/dialogsum) β€” Summarization of dialogs
55
+ - [`Anthropic/hh-rlhf`](https://huggingface.co/datasets/Anthropic/hh-rlhf) β€” Harmless/helpful/honest alignment data
56
+ - [`OpenAssistant/oasst1`](https://huggingface.co/datasets/OpenAssistant/oasst1) β€” OpenAssistant dialogues
57
+ - [`nomic-ai/gpt4all_prompt_generations`](https://huggingface.co/datasets/nomic-ai/gpt4all_prompt_generations) β€” Instructional prompt-response pairs
58
+ - [`sahil2801/CodeAlpaca-20k`](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k) β€” Programming/code generation instructions
59
+ - [`Open-Orca/OpenOrca`](https://huggingface.co/datasets/Open-Orca/OpenOrca) β€” High-quality responses to complex questions
60
+
61
+ ---
62
+
63
+ ## πŸ”§ Intended Use
64
+
65
+ This model is best suited for:
66
+
67
+ - **Conversational agents / chatbots**
68
+ - **Instruction-following assistants**
69
+ - **Lightweight AI on edge devices (via server inference)**
70
+ - **Educational tools and experiments**
71
+
72
+ ---
73
+
74
+ ## 🚫 Limitations
75
+
76
+ - This model is **not suitable for production use** without safety reviews.
77
+ - It may generate **inaccurate or biased responses**, as training data is from public sources.
78
+ - It is **not safe for sensitive or medical domains**.
79
+
80
+ ---
81
+
82
+ ## πŸ’¬ Example Prompt
83
+
84
+ Instruction:
85
+
86
+ Explain the difference between supervised and unsupervised learning.
87
+
88
+ Response:
89
+
90
+ Supervised learning uses labeled data to train models, while unsupervised learning uses unlabeled data to discover patterns or groupings in the data…
91
+
92
+ ---
93
+
94
+ ## πŸ“₯ How to Load the Adapters
95
+
96
+ To use this model, load the base TinyLLaMA model and apply the LoRA adapters:
97
+
98
+ ```python
99
+ from peft import PeftModel
100
+ from transformers import AutoModelForCausalLM, AutoTokenizer
101
+
102
+ base_model = AutoModelForCausalLM.from_pretrained(
103
+ "TinyLlama/TinyLlama-1.1B-Chat",
104
+ torch_dtype="auto",
105
+ device_map="auto"
106
+ )
107
+ tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat")
108
+
109
+ model = PeftModel.from_pretrained(base_model, "sahil239/chatbot-v2")
110
+
111
+ πŸ“„ License
112
+
113
+ This model is distributed under the Apache 2.0 License.
114
+
115
+ πŸ™ Acknowledgements
116
+
117
+ Thanks to the open-source datasets and projects: Alpaca, Dolly, OpenAssistant, Anthropic, OpenOrca, CodeAlpaca, GPT4All, and Hugging Face.
README.md CHANGED
@@ -1,207 +1,117 @@
1
  ---
2
- base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
3
- library_name: peft
4
- pipeline_tag: text-generation
5
  tags:
6
- - base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v1.0
7
- - lora
8
- - transformers
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
- # Model Card for Model ID
12
 
13
- <!-- Provide a quick summary of what the model is/does. -->
14
 
 
15
 
 
16
 
17
- ## Model Details
18
-
19
- ### Model Description
20
-
21
- <!-- Provide a longer summary of what this model is. -->
22
-
23
-
24
-
25
- - **Developed by:** [More Information Needed]
26
- - **Funded by [optional]:** [More Information Needed]
27
- - **Shared by [optional]:** [More Information Needed]
28
- - **Model type:** [More Information Needed]
29
- - **Language(s) (NLP):** [More Information Needed]
30
- - **License:** [More Information Needed]
31
- - **Finetuned from model [optional]:** [More Information Needed]
32
-
33
- ### Model Sources [optional]
34
-
35
- <!-- Provide the basic links for the model. -->
36
-
37
- - **Repository:** [More Information Needed]
38
- - **Paper [optional]:** [More Information Needed]
39
- - **Demo [optional]:** [More Information Needed]
40
-
41
- ## Uses
42
-
43
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
-
45
- ### Direct Use
46
-
47
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
-
49
- [More Information Needed]
50
-
51
- ### Downstream Use [optional]
52
-
53
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
-
55
- [More Information Needed]
56
-
57
- ### Out-of-Scope Use
58
-
59
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
-
61
- [More Information Needed]
62
-
63
- ## Bias, Risks, and Limitations
64
-
65
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
-
67
- [More Information Needed]
68
-
69
- ### Recommendations
70
-
71
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
-
73
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
-
75
- ## How to Get Started with the Model
76
-
77
- Use the code below to get started with the model.
78
-
79
- [More Information Needed]
80
-
81
- ## Training Details
82
-
83
- ### Training Data
84
-
85
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
-
87
- [More Information Needed]
88
-
89
- ### Training Procedure
90
-
91
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
-
93
- #### Preprocessing [optional]
94
-
95
- [More Information Needed]
96
-
97
-
98
- #### Training Hyperparameters
99
-
100
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
-
102
- #### Speeds, Sizes, Times [optional]
103
-
104
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
-
106
- [More Information Needed]
107
-
108
- ## Evaluation
109
-
110
- <!-- This section describes the evaluation protocols and provides the results. -->
111
-
112
- ### Testing Data, Factors & Metrics
113
-
114
- #### Testing Data
115
-
116
- <!-- This should link to a Dataset Card if possible. -->
117
-
118
- [More Information Needed]
119
-
120
- #### Factors
121
-
122
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
-
124
- [More Information Needed]
125
-
126
- #### Metrics
127
-
128
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
-
130
- [More Information Needed]
131
-
132
- ### Results
133
-
134
- [More Information Needed]
135
-
136
- #### Summary
137
-
138
-
139
-
140
- ## Model Examination [optional]
141
-
142
- <!-- Relevant interpretability work for the model goes here -->
143
-
144
- [More Information Needed]
145
-
146
- ## Environmental Impact
147
 
148
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
 
 
 
 
 
 
 
149
 
150
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
 
152
- - **Hardware Type:** [More Information Needed]
153
- - **Hours used:** [More Information Needed]
154
- - **Cloud Provider:** [More Information Needed]
155
- - **Compute Region:** [More Information Needed]
156
- - **Carbon Emitted:** [More Information Needed]
157
 
158
- ## Technical Specifications [optional]
159
 
160
- ### Model Architecture and Objective
 
 
 
 
 
 
 
161
 
162
- [More Information Needed]
163
 
164
- ### Compute Infrastructure
165
 
166
- [More Information Needed]
167
 
168
- #### Hardware
 
 
 
169
 
170
- [More Information Needed]
171
 
172
- #### Software
173
 
174
- [More Information Needed]
 
 
175
 
176
- ## Citation [optional]
177
 
178
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
 
180
- **BibTeX:**
181
 
182
- [More Information Needed]
183
 
184
- **APA:**
185
 
186
- [More Information Needed]
187
 
188
- ## Glossary [optional]
189
 
190
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
 
192
- [More Information Needed]
193
 
194
- ## More Information [optional]
 
 
195
 
196
- [More Information Needed]
 
 
 
 
 
197
 
198
- ## Model Card Authors [optional]
199
 
200
- [More Information Needed]
201
 
202
- ## Model Card Contact
203
 
204
- [More Information Needed]
205
- ### Framework versions
206
 
207
- - PEFT 0.17.0
 
1
  ---
2
+ license: apache-2.0
 
 
3
  tags:
4
+ - chat
5
+ - chatbot
6
+ - LoRA
7
+ - instruction-tuning
8
+ - conversational
9
+ - tinyllama
10
+ - transformers
11
+ language:
12
+ - en
13
+ datasets:
14
+ - tatsu-lab/alpaca
15
+ - databricks/databricks-dolly-15k
16
+ - knkarthick/dialogsum
17
+ - Anthropic/hh-rlhf
18
+ - OpenAssistant/oasst1
19
+ - nomic-ai/gpt4all_prompt_generations
20
+ - sahil2801/CodeAlpaca-20k
21
+ - Open-Orca/OpenOrca
22
+ model-index:
23
+ - name: chatbot-v2
24
+ results: []
25
  ---
26
 
27
+ # πŸ€– chatbot-v2 β€” TinyLLaMA Instruction-Tuned Chatbot (LoRA)
28
 
29
+ `chatbot-v2` is a lightweight, instruction-following conversational AI model based on **TinyLLaMA** and fine-tuned using **LoRA** adapters. It has been trained on a carefully curated mixture of open datasets covering assistant-like responses, code generation, summarization, safety alignment, and dialog reasoning.
30
 
31
+ This model is ideal for embedding into mobile or edge apps with low-resource inference needs or running via an API.
32
 
33
+ ---
34
 
35
+ ## 🧠 Base Model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
+ - **Model**: [`TinyLlama/TinyLlama-1.1B-Chat`](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat)
38
+ - **Architecture**: Decoder-only Transformer (GPT-style)
39
+ - **Fine-tuning method**: LoRA (low-rank adapters)
40
+ - **LoRA Parameters**:
41
+ - `r=16`
42
+ - `alpha=32`
43
+ - `dropout=0.05`
44
+ - Target modules: `q_proj`, `v_proj`
45
 
46
+ ---
47
 
48
+ ## πŸ“š Training Datasets
 
 
 
 
49
 
50
+ The model was fine-tuned on the following instruction-following, summarization, and dialogue datasets:
51
 
52
+ - [`tatsu-lab/alpaca`](https://huggingface.co/datasets/tatsu-lab/alpaca) β€” Stanford Alpaca dataset
53
+ - [`databricks/databricks-dolly-15k`](https://huggingface.co/datasets/databricks/databricks-dolly-15k) β€” Dolly instruction data
54
+ - [`knkarthick/dialogsum`](https://huggingface.co/datasets/knkarthick/dialogsum) β€” Summarization of dialogs
55
+ - [`Anthropic/hh-rlhf`](https://huggingface.co/datasets/Anthropic/hh-rlhf) β€” Harmless/helpful/honest alignment data
56
+ - [`OpenAssistant/oasst1`](https://huggingface.co/datasets/OpenAssistant/oasst1) β€” OpenAssistant dialogues
57
+ - [`nomic-ai/gpt4all_prompt_generations`](https://huggingface.co/datasets/nomic-ai/gpt4all_prompt_generations) β€” Instructional prompt-response pairs
58
+ - [`sahil2801/CodeAlpaca-20k`](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k) β€” Programming/code generation instructions
59
+ - [`Open-Orca/OpenOrca`](https://huggingface.co/datasets/Open-Orca/OpenOrca) β€” High-quality responses to complex questions
60
 
61
+ ---
62
 
63
+ ## πŸ”§ Intended Use
64
 
65
+ This model is best suited for:
66
 
67
+ - **Conversational agents / chatbots**
68
+ - **Instruction-following assistants**
69
+ - **Lightweight AI on edge devices (via server inference)**
70
+ - **Educational tools and experiments**
71
 
72
+ ---
73
 
74
+ ## 🚫 Limitations
75
 
76
+ - This model is **not suitable for production use** without safety reviews.
77
+ - It may generate **inaccurate or biased responses**, as training data is from public sources.
78
+ - It is **not safe for sensitive or medical domains**.
79
 
80
+ ---
81
 
82
+ ## πŸ’¬ Example Prompt
83
 
84
+ Instruction:
85
 
86
+ Explain the difference between supervised and unsupervised learning.
87
 
88
+ Response:
89
 
90
+ Supervised learning uses labeled data to train models, while unsupervised learning uses unlabeled data to discover patterns or groupings in the data…
91
 
92
+ ---
93
 
94
+ ## πŸ“₯ How to Load the Adapters
95
 
96
+ To use this model, load the base TinyLLaMA model and apply the LoRA adapters:
97
 
98
+ ```python
99
+ from peft import PeftModel
100
+ from transformers import AutoModelForCausalLM, AutoTokenizer
101
 
102
+ base_model = AutoModelForCausalLM.from_pretrained(
103
+ "TinyLlama/TinyLlama-1.1B-Chat",
104
+ torch_dtype="auto",
105
+ device_map="auto"
106
+ )
107
+ tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat")
108
 
109
+ model = PeftModel.from_pretrained(base_model, "sahil239/chatbot-v2")
110
 
111
+ πŸ“„ License
112
 
113
+ This model is distributed under the Apache 2.0 License.
114
 
115
+ πŸ™ Acknowledgements
 
116
 
117
+ Thanks to the open-source datasets and projects: Alpaca, Dolly, OpenAssistant, Anthropic, OpenOrca, CodeAlpaca, GPT4All, and Hugging Face.