--- license: apache-2.0 tags: - chat - chatbot - LoRA - instruction-tuning - conversational - tinyllama - transformers language: - en datasets: - tatsu-lab/alpaca - databricks/databricks-dolly-15k - knkarthick/dialogsum - Anthropic/hh-rlhf - OpenAssistant/oasst1 - nomic-ai/gpt4all_prompt_generations - sahil2801/CodeAlpaca-20k - Open-Orca/OpenOrca model-index: - name: chatbot-v2 results: [] --- # πŸ€– chatbot-v2 β€” TinyLLaMA Instruction-Tuned Chatbot (LoRA) `chatbot-v2` is a lightweight, instruction-following conversational AI model based on **TinyLLaMA** and fine-tuned using **LoRA** adapters. It has been trained on a carefully curated mixture of open datasets covering assistant-like responses, code generation, summarization, safety alignment, and dialog reasoning. This model is ideal for embedding into mobile or edge apps with low-resource inference needs or running via an API. --- ## 🧠 Base Model - **Model**: [`TinyLlama/TinyLlama-1.1B-Chat`](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat) - **Architecture**: Decoder-only Transformer (GPT-style) - **Fine-tuning method**: LoRA (low-rank adapters) - **LoRA Parameters**: - `r=16` - `alpha=32` - `dropout=0.05` - Target modules: `q_proj`, `v_proj` --- ## πŸ“š Training Datasets The model was fine-tuned on the following instruction-following, summarization, and dialogue datasets: - [`tatsu-lab/alpaca`](https://huggingface.co/datasets/tatsu-lab/alpaca) β€” Stanford Alpaca dataset - [`databricks/databricks-dolly-15k`](https://huggingface.co/datasets/databricks/databricks-dolly-15k) β€” Dolly instruction data - [`knkarthick/dialogsum`](https://huggingface.co/datasets/knkarthick/dialogsum) β€” Summarization of dialogs - [`Anthropic/hh-rlhf`](https://huggingface.co/datasets/Anthropic/hh-rlhf) β€” Harmless/helpful/honest alignment data - [`OpenAssistant/oasst1`](https://huggingface.co/datasets/OpenAssistant/oasst1) β€” OpenAssistant dialogues - [`nomic-ai/gpt4all_prompt_generations`](https://huggingface.co/datasets/nomic-ai/gpt4all_prompt_generations) β€” Instructional prompt-response pairs - [`sahil2801/CodeAlpaca-20k`](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k) β€” Programming/code generation instructions - [`Open-Orca/OpenOrca`](https://huggingface.co/datasets/Open-Orca/OpenOrca) β€” High-quality responses to complex questions --- ## πŸ”§ Intended Use This model is best suited for: - **Conversational agents / chatbots** - **Instruction-following assistants** - **Lightweight AI on edge devices (via server inference)** - **Educational tools and experiments** --- ## 🚫 Limitations - This model is **not suitable for production use** without safety reviews. - It may generate **inaccurate or biased responses**, as training data is from public sources. - It is **not safe for sensitive or medical domains**. --- ## πŸ’¬ Example Prompt Instruction: Explain the difference between supervised and unsupervised learning. Response: Supervised learning uses labeled data to train models, while unsupervised learning uses unlabeled data to discover patterns or groupings in the data… --- ## πŸ“₯ How to Load the Adapters To use this model, load the base TinyLLaMA model and apply the LoRA adapters: ```python from peft import PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer base_model = AutoModelForCausalLM.from_pretrained( "TinyLlama/TinyLlama-1.1B-Chat", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat") model = PeftModel.from_pretrained(base_model, "sahil239/chatbot-v2") πŸ“„ License This model is distributed under the Apache 2.0 License. πŸ™ Acknowledgements Thanks to the open-source datasets and projects: Alpaca, Dolly, OpenAssistant, Anthropic, OpenOrca, CodeAlpaca, GPT4All, and Hugging Face.