# TensorFlow.js Model ## Model Information - Framework: TensorFlow.js - Type: Deep Q-Network (DQN) - Created by: IgnitionAI ## Model Format This model is saved in TensorFlow.js format and can be loaded in two ways: 1. **LayersModel** (Default) - Better for fine-tuning and training - More flexible for model modifications - Higher memory usage - Slower inference 2. **GraphModel** - Optimized for inference only - Faster execution - Lower memory usage - Not suitable for training ## Usage ```javascript import { loadModelFromHub } from '@ignitionai/backend-tfjs'; // Option 1: Load as LayersModel (for training/fine-tuning) const layersModel = await loadModelFromHub( 'salim4n/tfjs-dqn-test-1744654655889', 'model/model.json', false // graphModel = false for LayersModel ); // Option 2: Load as GraphModel (for inference only) const graphModel = await loadModelFromHub( 'salim4n/tfjs-dqn-test-1744654655889', 'model/model.json', true // graphModel = true for GraphModel ); // Run inference const input = tf.tensor2d([[0.1, 0.2]]); const output = model.predict(input); ``` ## Features - Automatic retry with exponential backoff - Configurable retry attempts and delays - Error handling and logging - Support for both LayersModel and GraphModel ## Files - `model.json`: Model architecture and configuration - `weights.bin`: Model weights - `README.md`: This documentation ## Repository This model was uploaded via the IgnitionAI TensorFlow.js integration.