File size: 2,189 Bytes
07d7959 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec-xlsr-53-turkish-v4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec-xlsr-53-turkish-v4
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8656
- Wer: 0.5719
- Cer: 0.1447
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 750
- num_epochs: 12
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:|
| 3.1113 | 1.3498 | 1000 | 3.0797 | 1.0 | 1.0 |
| 0.8723 | 2.6995 | 2000 | 0.5867 | 0.5040 | 0.1197 |
| 0.752 | 4.0486 | 3000 | 0.4962 | 0.4101 | 0.0981 |
| 0.7464 | 5.3984 | 4000 | 0.5006 | 0.4184 | 0.0998 |
| 0.7835 | 6.7481 | 5000 | 0.5443 | 0.4332 | 0.1036 |
| 1.0919 | 8.0972 | 6000 | 0.6643 | 0.4878 | 0.1186 |
| 1.3457 | 9.4470 | 7000 | 0.9190 | 0.6869 | 0.1907 |
| 1.2715 | 10.7968 | 8000 | 0.8656 | 0.5719 | 0.1447 |
### Framework versions
- Transformers 4.56.1
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.22.0
|