File size: 2,189 Bytes
07d7959
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec-xlsr-53-turkish-v4
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec-xlsr-53-turkish-v4

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8656
- Wer: 0.5719
- Cer: 0.1447

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 750
- num_epochs: 12
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:|
| 3.1113        | 1.3498  | 1000 | 3.0797          | 1.0    | 1.0    |
| 0.8723        | 2.6995  | 2000 | 0.5867          | 0.5040 | 0.1197 |
| 0.752         | 4.0486  | 3000 | 0.4962          | 0.4101 | 0.0981 |
| 0.7464        | 5.3984  | 4000 | 0.5006          | 0.4184 | 0.0998 |
| 0.7835        | 6.7481  | 5000 | 0.5443          | 0.4332 | 0.1036 |
| 1.0919        | 8.0972  | 6000 | 0.6643          | 0.4878 | 0.1186 |
| 1.3457        | 9.4470  | 7000 | 0.9190          | 0.6869 | 0.1907 |
| 1.2715        | 10.7968 | 8000 | 0.8656          | 0.5719 | 0.1447 |


### Framework versions

- Transformers 4.56.1
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.22.0