{ "cells": [ { "cell_type": "code", "execution_count": 23, "id": "50f3ab13-02e2-4614-bb6c-a5e0584c3ae2", "metadata": {}, "outputs": [], "source": [ "from tensorflow.keras.models import Sequential\n", "from tensorflow.keras.layers import Dense, Activation, Conv2D, Flatten, Dropout, MaxPooling2D, BatchNormalization\n", "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n", "from keras import regularizers, optimizers\n", "import os\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import tensorflow as tf" ] }, { "cell_type": "code", "execution_count": 24, "id": "115fbe9d-ffac-4286-99c6-aef6daf10e98", "metadata": {}, "outputs": [], "source": [ "traindf = pd.read_csv('train.csv', dtype=str)" ] }, { "cell_type": "code", "execution_count": 25, "id": "3b7916cf-92c3-4283-a399-79f562ac05d7", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | id | \n", "label | \n", "
---|---|---|
0 | \n", "0.jpg | \n", "1 | \n", "
1 | \n", "1.jpg | \n", "1 | \n", "
2 | \n", "2.jpg | \n", "1 | \n", "
3 | \n", "3.jpg | \n", "0 | \n", "
4 | \n", "4.jpg | \n", "1 | \n", "