sanak commited on
Commit
3c38bb3
·
1 Parent(s): e34b532

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1736.23 +/- 84.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e25924d11499608ca3e5339df22ca11a7ca63f83ed2a2f1c654b7033f3287a23
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6b32d684c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6b32d68550>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6b32d685e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6b32d68670>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6b32d68700>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6b32d68790>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6b32d68820>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6b32d688b0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6b32d68940>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6b32d689d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6b32d68a60>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6b32d68af0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f6b32d6b700>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1679584667151254303,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHGefT8CmAq8BDrlPku4Kz9KHwS/zcWNv+nLRb8C/re+UF/RPogGuL85OjU+MXKkPieU+r5Gl8e/X5wUPqDBF7/5TXK/MYc6P1w5Bj0u1hI/t8AFv7cy1b8d+Aq/eLaVP037xb9+yKM+0TC2v37GO79F47E/FPmiPzwscj869Q4/Ea4YPxfAaD8EXUC/8Cguv3aYoD/AfgW+dbLhP3xNar98CZa+JichP86+NDxcgBjAFqK3v+vNqbxbAtu+WlrePuJFnr7UqOs98eyiPp7G7b+igiU/fsijPgPbMz9+xju/4bv5vGS1Qb4kq6A+rWHlvsJbmj7eUs+/y+0APnwWUz/iBMK+pn7Kv3GXl74EzKw+XJCevtxazT4WPC2/mADFvtE9rj2wPtc/9aXMPsuwrD/c5Ru/r54GPjHuPj9qA8k+ooIlP37Ioz7RMLa/fsY7v0VJLr7dEca+IMQPPv8UnL+9EuC+Vz/Vv5OLBD102oE/zdPRv2wtJz95BPi9K0aGPy4b8z4bjQlArxZLvwrsW77uoYw/OZY4QJIgcT/ygFNAv2IBv5s82D+u/p09RwU8QE37xb9+yKM+0TC2v37GO7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACGr6W1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJEHJvQAAAACcD+e/AAAAAICW37wAAAAAdUf5PwAAAABspz+9AAAAAN5AAUAAAAAAyIubPQAAAABdpfy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgziTNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKrR3L0AAAAA95/3vwAAAADUfZa9AAAAAKui+T8AAAAAIAmrPQAAAADkQuk/AAAAAL0Vi70AAAAAl0HtvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBmg7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC3vyA9AAAAABXa6L8AAAAAD5/4vQAAAAAywdo/AAAAAKqc0T0AAAAAxLndPwAAAACoINw9AAAAAKA/3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABcj/O1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAKr1NPQAAAAA1Rua/AAAAAM4pzr0AAAAAKPzoPwAAAADP+gq9AAAAAEey3j8AAAAABOndvQAAAACqJfq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJytAV45cTuMAWyUTegDjAF0lEdAqUip00WM0nV9lChoBkdAngwWKdhAnmgHTegDaAhHQKlJmC/47BB1fZQoaAZHQJyuK4Ajps5oB03oA2gIR0CpTz3fqHGkdX2UKGgGR0CdEHWiDdxiaAdN6ANoCEdAqVIvV/c32nV9lChoBkdAnJ+U+xGDtmgHTegDaAhHQKlUbHHWBjF1fZQoaAZHQJqKoe0Xxe9oB03oA2gIR0CpVXx2jfvXdX2UKGgGR0Ce+RIzFdcCaAdN6ANoCEdAqV3xYigTRXV9lChoBkdAn+sglF+d9WgHTegDaAhHQKlhNYxtYSx1fZQoaAZHQJ/443XI2floB03oA2gIR0CpY1ZQYUFjdX2UKGgGR0CgwX4bjtG/aAdN6ANoCEdAqWQ5pg1FY3V9lChoBkdAoFjVANXo1WgHTegDaAhHQKlpzkwN9Yx1fZQoaAZHQJzyWe6I3zdoB03oA2gIR0CpbNkzO5avdX2UKGgGR0CaF7McZLqVaAdN6ANoCEdAqW7+ZkTYd3V9lChoBkdAmlmgjt5UtWgHTegDaAhHQKlv9MkhRqJ1fZQoaAZHQJuSuRvFWGRoB03oA2gIR0CpdupwKjSHdX2UKGgGR0Ca5aXCCSRsaAdN6ANoCEdAqXumaMJhOXV9lChoBkdAmvhEx20Re2gHTegDaAhHQKl+CvZAY511fZQoaAZHQJvY8g5imVJoB03oA2gIR0Cpfv5amoBJdX2UKGgGR0CarMrSE12raAdN6ANoCEdAqYSroEB8yHV9lChoBkdAm/A9OdoWYWgHTegDaAhHQKmHmo4MnZ11fZQoaAZHQJ1M+1LJ0XBoB03oA2gIR0Cpicc7QswtdX2UKGgGR0CaUv1BMSK4aAdN6ANoCEdAqYq+zF+/g3V9lChoBkdAmtvTDfm9x2gHTegDaAhHQKmQi2DQJHB1fZQoaAZHQJoiN0mtyPxoB03oA2gIR0CplRsYl6Z6dX2UKGgGR0CbWyROUMXraAdN6ANoCEdAqZiDgydnTXV9lChoBkdAm8o7iqABk2gHTegDaAhHQKmZ+AxSHdp1fZQoaAZHQJa+aq6vq1RoB03oA2gIR0Cpn6TURWcSdX2UKGgGR0CcjejlxOtXaAdN6ANoCEdAqaK+FDfFaXV9lChoBkdAmNvv/3nIQ2gHTegDaAhHQKmk4vZAY511fZQoaAZHQJ4Y16Vt4zJoB03oA2gIR0CppctfgJkYdX2UKGgGR0CcReTi83+/aAdN6ANoCEdAqatW/cnE23V9lChoBkdAlzkmOdXkpGgHTegDaAhHQKmuXgb6xgR1fZQoaAZHQJs3BuxbB45oB03oA2gIR0CpsZOoxYaHdX2UKGgGR0CbGib8WKuTaAdN6ANoCEdAqbMK3kPtlnV9lChoBkdAmmc7RBu4w2gHTegDaAhHQKm6WE7nxKB1fZQoaAZHQJVu2Z2IO6NoB03oA2gIR0CpvVFnh86WdX2UKGgGR0CbKCbPhQ3xaAdN6ANoCEdAqb92ugYgq3V9lChoBkdAm/3J9iMHbGgHTegDaAhHQKnAZvUBnzx1fZQoaAZHQJkC5tFa0QdoB03oA2gIR0CpxfpRGc4HdX2UKGgGR0Ca3V5RCQcQaAdN6ANoCEdAqckFCPZIx3V9lChoBkdAmKWEOEug6GgHTegDaAhHQKnLI/wAlv91fZQoaAZHQJn60OZssQNoB03oA2gIR0CpzGD8tPHldX2UKGgGR0CYt5aRISUUaAdN6ANoCEdAqdUIEwFkhHV9lChoBkdAmHXzENvwVmgHTegDaAhHQKnYCyVv/BF1fZQoaAZHQJv7ODujRD1oB03oA2gIR0Cp2iBVENONdX2UKGgGR0CahGSTyJ9BaAdN6ANoCEdAqdsSdQO4G3V9lChoBkdAm+IVjNIK+mgHTegDaAhHQKnghvR7Z391fZQoaAZHQJu+ukxh2GJoB03oA2gIR0Cp44Ggam4zdX2UKGgGR0CcBzmxMWXUaAdN6ANoCEdAqeWqRuCPIXV9lChoBkdAncuXaFmFrWgHTegDaAhHQKnmnA+pwS91fZQoaAZHQJ2/j2bobGZoB03oA2gIR0Cp7bRFZxJedX2UKGgGR0CdgUUWl/H6aAdN6ANoCEdAqfJKPluFYnV9lChoBkdAm0Mwb6xgRmgHTegDaAhHQKn0gzE74i51fZQoaAZHQJ4Uce9zwMJoB03oA2gIR0Cp9WlQ2uPndX2UKGgGR0CeU7ir1dxAaAdN6ANoCEdAqfsaxA0KqnV9lChoBkdAnFtBsuWa+mgHTegDaAhHQKn+IBJ7LMd1fZQoaAZHQJuzM31jAi5oB03oA2gIR0CqAEefI0ZWdX2UKGgGR0CebcO3DvVmaAdN6ANoCEdAqgEyaZx7zHV9lChoBkdAn++DvVmSQ2gHTegDaAhHQKoHEYYzi0h1fZQoaAZHQJ4lfQzDXOJoB03oA2gIR0CqC66mGdqddX2UKGgGR0Ccq1n+Q2deaAdN6ANoCEdAqg8bNt65XnV9lChoBkdAmy59d/rjYWgHTegDaAhHQKoQZbSJCSl1fZQoaAZHQJvJQWoFV1hoB03oA2gIR0CqFf65f+judX2UKGgGR0CaPSrjHXEqaAdN6ANoCEdAqhkFB6a9b3V9lChoBkdAm6HLExZdOmgHTegDaAhHQKobJIPK+zt1fZQoaAZHQJlLBRFZxJdoB03oA2gIR0CqHBbnPmgbdX2UKGgGR0CgSUBQFcIJaAdN6ANoCEdAqiGlPFefI3V9lChoBkdAn/HhKUVzqGgHTegDaAhHQKok6lyimEZ1fZQoaAZHQJ/79iAlOXVoB03oA2gIR0CqKB4Zl4C7dX2UKGgGR0CgkZSv9tMxaAdN6ANoCEdAqimZJd0JW3V9lChoBkdAnyaHKW9lE2gHTegDaAhHQKowokt29td1fZQoaAZHQJ9+mhew9q1oB03oA2gIR0CqM5voV2zOdX2UKGgGR0CgAZr6tT1kaAdN6ANoCEdAqjW5OSGJvnV9lChoBkdAoG7l1hb4amgHTegDaAhHQKo2rnrY5DJ1fZQoaAZHQKAUilenhsJoB03oA2gIR0CqPD/8/D+BdX2UKGgGR0CeYypoK2KEaAdN6ANoCEdAqj9Lf779AHV9lChoBkdAnlhyjcmBv2gHTegDaAhHQKpBYlb/wRZ1fZQoaAZHQJ45P8rI5o5oB03oA2gIR0CqQqsS00FbdX2UKGgGR0Cf3yqQzUI+aAdN6ANoCEdAqktIqkM1CXV9lChoBkdAn4c1RUFSsWgHTegDaAhHQKpOSjMV1wJ1fZQoaAZHQJ/bnXtjTa1oB03oA2gIR0CqUHPHDJlrdX2UKGgGR0CgbQtQKrq/aAdN6ANoCEdAqlFhFLFn7HV9lChoBkdAnh72Be5WimgHTegDaAhHQKpW6Gi5/b11fZQoaAZHQKA+LMGHHm1oB03oA2gIR0CqWda3RXwLdX2UKGgGR0CgZ4mw7kn1aAdN6ANoCEdAqlv+g8KXwHV9lChoBkdAnt6Qow22omgHTegDaAhHQKpc7n13+uN1fZQoaAZHQJwOEmMOwxFoB03oA2gIR0CqZBb4rSVodX2UKGgGR0CS/q544ZMtaAdN6ANoCEdAqmivPomoi3V9lChoBkdAl116+zt1IWgHTegDaAhHQKpq08/Uvwp1fZQoaAZHQJR657HAAQxoB03oA2gIR0Cqa8meMAFQdX2UKGgGR0CXaNwWFev7aAdN6ANoCEdAqnFYNb1RL3V9lChoBkdAlrCcHSnccmgHTegDaAhHQKp0WRf4REp1fZQoaAZHQJMc7ykKu0VoB03oA2gIR0Cqdn0CJXQudX2UKGgGR0CXFSo4+8oQaAdN6ANoCEdAqndrRQaaTnV9lChoBkdAl6P00Nz8xmgHTegDaAhHQKp9ajk+5e91fZQoaAZHQJHDK6cy31BoB03oA2gIR0Cqge/6O5rhdX2UKGgGR0CI43BTGYKIaAdN6ANoCEdAqoVjeVLSNXV9lChoBkdAjWIUOd5IH2gHTegDaAhHQKqGnaOgg5l1fZQoaAZHQJFNRUJfICFoB03oA2gIR0CqjDJ/XoTxdX2UKGgGR0CWtyc/+sHTaAdN6ANoCEdAqo8uoo/iYXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d0850b0805af16f8327bcee2b1d44b47971966347e852e5718aad499f647b7f
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f68a3598213086c1cc525f44e2fad2cb19560082f57e78405d069fc6fccac790
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6b32d684c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6b32d68550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6b32d685e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6b32d68670>", "_build": "<function ActorCriticPolicy._build at 0x7f6b32d68700>", "forward": "<function ActorCriticPolicy.forward at 0x7f6b32d68790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6b32d68820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6b32d688b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6b32d68940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6b32d689d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6b32d68a60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6b32d68af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6b32d6b700>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679584667151254303, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHGefT8CmAq8BDrlPku4Kz9KHwS/zcWNv+nLRb8C/re+UF/RPogGuL85OjU+MXKkPieU+r5Gl8e/X5wUPqDBF7/5TXK/MYc6P1w5Bj0u1hI/t8AFv7cy1b8d+Aq/eLaVP037xb9+yKM+0TC2v37GO79F47E/FPmiPzwscj869Q4/Ea4YPxfAaD8EXUC/8Cguv3aYoD/AfgW+dbLhP3xNar98CZa+JichP86+NDxcgBjAFqK3v+vNqbxbAtu+WlrePuJFnr7UqOs98eyiPp7G7b+igiU/fsijPgPbMz9+xju/4bv5vGS1Qb4kq6A+rWHlvsJbmj7eUs+/y+0APnwWUz/iBMK+pn7Kv3GXl74EzKw+XJCevtxazT4WPC2/mADFvtE9rj2wPtc/9aXMPsuwrD/c5Ru/r54GPjHuPj9qA8k+ooIlP37Ioz7RMLa/fsY7v0VJLr7dEca+IMQPPv8UnL+9EuC+Vz/Vv5OLBD102oE/zdPRv2wtJz95BPi9K0aGPy4b8z4bjQlArxZLvwrsW77uoYw/OZY4QJIgcT/ygFNAv2IBv5s82D+u/p09RwU8QE37xb9+yKM+0TC2v37GO7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACGr6W1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJEHJvQAAAACcD+e/AAAAAICW37wAAAAAdUf5PwAAAABspz+9AAAAAN5AAUAAAAAAyIubPQAAAABdpfy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgziTNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKrR3L0AAAAA95/3vwAAAADUfZa9AAAAAKui+T8AAAAAIAmrPQAAAADkQuk/AAAAAL0Vi70AAAAAl0HtvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBmg7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC3vyA9AAAAABXa6L8AAAAAD5/4vQAAAAAywdo/AAAAAKqc0T0AAAAAxLndPwAAAACoINw9AAAAAKA/3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABcj/O1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAKr1NPQAAAAA1Rua/AAAAAM4pzr0AAAAAKPzoPwAAAADP+gq9AAAAAEey3j8AAAAABOndvQAAAACqJfq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJytAV45cTuMAWyUTegDjAF0lEdAqUip00WM0nV9lChoBkdAngwWKdhAnmgHTegDaAhHQKlJmC/47BB1fZQoaAZHQJyuK4Ajps5oB03oA2gIR0CpTz3fqHGkdX2UKGgGR0CdEHWiDdxiaAdN6ANoCEdAqVIvV/c32nV9lChoBkdAnJ+U+xGDtmgHTegDaAhHQKlUbHHWBjF1fZQoaAZHQJqKoe0Xxe9oB03oA2gIR0CpVXx2jfvXdX2UKGgGR0Ce+RIzFdcCaAdN6ANoCEdAqV3xYigTRXV9lChoBkdAn+sglF+d9WgHTegDaAhHQKlhNYxtYSx1fZQoaAZHQJ/443XI2floB03oA2gIR0CpY1ZQYUFjdX2UKGgGR0CgwX4bjtG/aAdN6ANoCEdAqWQ5pg1FY3V9lChoBkdAoFjVANXo1WgHTegDaAhHQKlpzkwN9Yx1fZQoaAZHQJzyWe6I3zdoB03oA2gIR0CpbNkzO5avdX2UKGgGR0CaF7McZLqVaAdN6ANoCEdAqW7+ZkTYd3V9lChoBkdAmlmgjt5UtWgHTegDaAhHQKlv9MkhRqJ1fZQoaAZHQJuSuRvFWGRoB03oA2gIR0CpdupwKjSHdX2UKGgGR0Ca5aXCCSRsaAdN6ANoCEdAqXumaMJhOXV9lChoBkdAmvhEx20Re2gHTegDaAhHQKl+CvZAY511fZQoaAZHQJvY8g5imVJoB03oA2gIR0Cpfv5amoBJdX2UKGgGR0CarMrSE12raAdN6ANoCEdAqYSroEB8yHV9lChoBkdAm/A9OdoWYWgHTegDaAhHQKmHmo4MnZ11fZQoaAZHQJ1M+1LJ0XBoB03oA2gIR0Cpicc7QswtdX2UKGgGR0CaUv1BMSK4aAdN6ANoCEdAqYq+zF+/g3V9lChoBkdAmtvTDfm9x2gHTegDaAhHQKmQi2DQJHB1fZQoaAZHQJoiN0mtyPxoB03oA2gIR0CplRsYl6Z6dX2UKGgGR0CbWyROUMXraAdN6ANoCEdAqZiDgydnTXV9lChoBkdAm8o7iqABk2gHTegDaAhHQKmZ+AxSHdp1fZQoaAZHQJa+aq6vq1RoB03oA2gIR0Cpn6TURWcSdX2UKGgGR0CcjejlxOtXaAdN6ANoCEdAqaK+FDfFaXV9lChoBkdAmNvv/3nIQ2gHTegDaAhHQKmk4vZAY511fZQoaAZHQJ4Y16Vt4zJoB03oA2gIR0CppctfgJkYdX2UKGgGR0CcReTi83+/aAdN6ANoCEdAqatW/cnE23V9lChoBkdAlzkmOdXkpGgHTegDaAhHQKmuXgb6xgR1fZQoaAZHQJs3BuxbB45oB03oA2gIR0CpsZOoxYaHdX2UKGgGR0CbGib8WKuTaAdN6ANoCEdAqbMK3kPtlnV9lChoBkdAmmc7RBu4w2gHTegDaAhHQKm6WE7nxKB1fZQoaAZHQJVu2Z2IO6NoB03oA2gIR0CpvVFnh86WdX2UKGgGR0CbKCbPhQ3xaAdN6ANoCEdAqb92ugYgq3V9lChoBkdAm/3J9iMHbGgHTegDaAhHQKnAZvUBnzx1fZQoaAZHQJkC5tFa0QdoB03oA2gIR0CpxfpRGc4HdX2UKGgGR0Ca3V5RCQcQaAdN6ANoCEdAqckFCPZIx3V9lChoBkdAmKWEOEug6GgHTegDaAhHQKnLI/wAlv91fZQoaAZHQJn60OZssQNoB03oA2gIR0CpzGD8tPHldX2UKGgGR0CYt5aRISUUaAdN6ANoCEdAqdUIEwFkhHV9lChoBkdAmHXzENvwVmgHTegDaAhHQKnYCyVv/BF1fZQoaAZHQJv7ODujRD1oB03oA2gIR0Cp2iBVENONdX2UKGgGR0CahGSTyJ9BaAdN6ANoCEdAqdsSdQO4G3V9lChoBkdAm+IVjNIK+mgHTegDaAhHQKnghvR7Z391fZQoaAZHQJu+ukxh2GJoB03oA2gIR0Cp44Ggam4zdX2UKGgGR0CcBzmxMWXUaAdN6ANoCEdAqeWqRuCPIXV9lChoBkdAncuXaFmFrWgHTegDaAhHQKnmnA+pwS91fZQoaAZHQJ2/j2bobGZoB03oA2gIR0Cp7bRFZxJedX2UKGgGR0CdgUUWl/H6aAdN6ANoCEdAqfJKPluFYnV9lChoBkdAm0Mwb6xgRmgHTegDaAhHQKn0gzE74i51fZQoaAZHQJ4Uce9zwMJoB03oA2gIR0Cp9WlQ2uPndX2UKGgGR0CeU7ir1dxAaAdN6ANoCEdAqfsaxA0KqnV9lChoBkdAnFtBsuWa+mgHTegDaAhHQKn+IBJ7LMd1fZQoaAZHQJuzM31jAi5oB03oA2gIR0CqAEefI0ZWdX2UKGgGR0CebcO3DvVmaAdN6ANoCEdAqgEyaZx7zHV9lChoBkdAn++DvVmSQ2gHTegDaAhHQKoHEYYzi0h1fZQoaAZHQJ4lfQzDXOJoB03oA2gIR0CqC66mGdqddX2UKGgGR0Ccq1n+Q2deaAdN6ANoCEdAqg8bNt65XnV9lChoBkdAmy59d/rjYWgHTegDaAhHQKoQZbSJCSl1fZQoaAZHQJvJQWoFV1hoB03oA2gIR0CqFf65f+judX2UKGgGR0CaPSrjHXEqaAdN6ANoCEdAqhkFB6a9b3V9lChoBkdAm6HLExZdOmgHTegDaAhHQKobJIPK+zt1fZQoaAZHQJlLBRFZxJdoB03oA2gIR0CqHBbnPmgbdX2UKGgGR0CgSUBQFcIJaAdN6ANoCEdAqiGlPFefI3V9lChoBkdAn/HhKUVzqGgHTegDaAhHQKok6lyimEZ1fZQoaAZHQJ/79iAlOXVoB03oA2gIR0CqKB4Zl4C7dX2UKGgGR0CgkZSv9tMxaAdN6ANoCEdAqimZJd0JW3V9lChoBkdAnyaHKW9lE2gHTegDaAhHQKowokt29td1fZQoaAZHQJ9+mhew9q1oB03oA2gIR0CqM5voV2zOdX2UKGgGR0CgAZr6tT1kaAdN6ANoCEdAqjW5OSGJvnV9lChoBkdAoG7l1hb4amgHTegDaAhHQKo2rnrY5DJ1fZQoaAZHQKAUilenhsJoB03oA2gIR0CqPD/8/D+BdX2UKGgGR0CeYypoK2KEaAdN6ANoCEdAqj9Lf779AHV9lChoBkdAnlhyjcmBv2gHTegDaAhHQKpBYlb/wRZ1fZQoaAZHQJ45P8rI5o5oB03oA2gIR0CqQqsS00FbdX2UKGgGR0Cf3yqQzUI+aAdN6ANoCEdAqktIqkM1CXV9lChoBkdAn4c1RUFSsWgHTegDaAhHQKpOSjMV1wJ1fZQoaAZHQJ/bnXtjTa1oB03oA2gIR0CqUHPHDJlrdX2UKGgGR0CgbQtQKrq/aAdN6ANoCEdAqlFhFLFn7HV9lChoBkdAnh72Be5WimgHTegDaAhHQKpW6Gi5/b11fZQoaAZHQKA+LMGHHm1oB03oA2gIR0CqWda3RXwLdX2UKGgGR0CgZ4mw7kn1aAdN6ANoCEdAqlv+g8KXwHV9lChoBkdAnt6Qow22omgHTegDaAhHQKpc7n13+uN1fZQoaAZHQJwOEmMOwxFoB03oA2gIR0CqZBb4rSVodX2UKGgGR0CS/q544ZMtaAdN6ANoCEdAqmivPomoi3V9lChoBkdAl116+zt1IWgHTegDaAhHQKpq08/Uvwp1fZQoaAZHQJR657HAAQxoB03oA2gIR0Cqa8meMAFQdX2UKGgGR0CXaNwWFev7aAdN6ANoCEdAqnFYNb1RL3V9lChoBkdAlrCcHSnccmgHTegDaAhHQKp0WRf4REp1fZQoaAZHQJMc7ykKu0VoB03oA2gIR0Cqdn0CJXQudX2UKGgGR0CXFSo4+8oQaAdN6ANoCEdAqndrRQaaTnV9lChoBkdAl6P00Nz8xmgHTegDaAhHQKp9ajk+5e91fZQoaAZHQJHDK6cy31BoB03oA2gIR0Cqge/6O5rhdX2UKGgGR0CI43BTGYKIaAdN6ANoCEdAqoVjeVLSNXV9lChoBkdAjWIUOd5IH2gHTegDaAhHQKqGnaOgg5l1fZQoaAZHQJFNRUJfICFoB03oA2gIR0CqjDJ/XoTxdX2UKGgGR0CWtyc/+sHTaAdN6ANoCEdAqo8uoo/iYXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:448a9aa90110878d844b43e6c7fc4a7dd8f9781f6ac309a8353cad13e4433369
3
+ size 1211768
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1736.227207657043, "std_reward": 84.00420934784192, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-23T16:32:14.328804"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbdb54ddb91a0c13667609c3d3268a4d6b6f6f8df27828586a2260c1bfb8e319
3
+ size 2136