File size: 2,180 Bytes
33dd850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
license: apache-2.0
tags:
- object-detection
- detectron2
- wildlife
- animals
- faster-rcnn
- inception
datasets:
- custom-wildlife-dataset
metrics:
- AP
- AP50
- AP75
model-index:
- name: inception-wildlife-detector-detectron2
  results:
  - task:
      type: object-detection
      name: Object Detection
    dataset:
      type: custom-wildlife-dataset
      name: Wildlife Detection Dataset
    metrics:
    - type: AP
      value: 45.7
      name: Average Precision
    - type: AP50
      value: 81.8
      name: AP at IoU=0.50
    - type: AP75
      value: 47.7
      name: AP at IoU=0.75
---

# Wildlife Detector - Detectron2

A Faster R-CNN model with optimized Inception v1 backbone for detecting 10 wildlife species.

## Classes
- Antelope
- Buffalo  
- Elephant
- Giraffe
- Gorilla
- Leopard
- Lion
- Rhino
- Wolf
- Zebra

## Performance

| Metric | Value |
|--------|--------|
| AP     | 45.7%  |
| AP50   | 81.8%  |
| AP75   | 47.7%  |

### Per-Class Performance (AP)
| Animal   | AP    | Animal   | AP    |
|----------|-------|----------|-------|
| Buffalo  | 58.9% | Elephant | 58.5% |
| Gorilla  | 51.2% | Leopard  | 49.4% |
| Wolf     | 48.0% | Antelope | 46.4% |
| Rhino    | 44.1% | Zebra    | 43.7% |
| Lion     | 31.9% | Giraffe  | 24.5% |

## Usage

```python
import torch
from detectron2.config import get_cfg
from detectron2.engine import DefaultPredictor
from detectron2 import model_zoo
from huggingface_hub import hf_hub_download

# Download model
model_path = hf_hub_download(
    repo_id="mynane/inception-wildlife-detector-detectron2", 
    filename="pytorch_model.bin"
)

# Setup config
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-Detection/faster_rcnn_R_50_C4_3x.yaml"))
cfg.MODEL.WEIGHTS = model_path
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 10
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5

# Create predictor
predictor = DefaultPredictor(cfg)

# Inference
import cv2
image = cv2.imread("wildlife_image.jpg")
outputs = predictor(image)
```

## Model Details
- **Architecture**: Faster R-CNN with Optimized Inception v1 backbone
- **Framework**: Detectron2
- **Input Size**: 800x1333 (min x max)
- **Confidence Threshold**: 0.5