--- library_name: transformers tags: - generated_from_trainer - music metrics: - accuracy datasets: - sandernotenbaert/lmd_matched training_config: vocab_size: 30000 hidden_size: 256 intermediate_size: 512 num_hidden_layers: 4 num_attention_heads: 4 num_key_value_heads: 4 sliding_window: 4 max_position_embeddings: 1024 pad_token_id: 0 bos_token_id: 1 eos_token_id: 2 pipeline_tag: other model-index: - name: OKAI-midi-gen-v-001 results: [] --- # OKAI-midi-gen-v-001 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 10.1912 - Accuracy: 0.0008 ## Model description First test with small subset on M1Pro. Generates valid files, notes very clustered with long gaps ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure training_config: vocab_size: 30000 hidden_size: 256 intermediate_size: 512 num_hidden_layers: 4 num_attention_heads: 4 num_key_value_heads: 4 sliding_window: 4 max_position_embeddings: 1024 pad_token_id: 0 bos_token_id: 1 eos_token_id: 2 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 16 - seed: 444 - gradient_accumulation_steps: 3 - total_train_batch_size: 24 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.3 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-------:|:----:|:--------:|:---------------:| | 10.2727 | 3.2283 | 100 | 0.0000 | 10.3284 | | 9.7582 | 6.4565 | 200 | 0.0026 | 10.0966 | | 9.2052 | 9.6848 | 300 | 0.0037 | 9.9513 | | 8.8216 | 12.9130 | 400 | 0.0034 | 9.9538 | | 8.406 | 16.1304 | 500 | 0.0029 | 9.9524 | | 7.8326 | 19.3587 | 600 | 0.0021 | 9.9458 | | 7.1956 | 22.5870 | 700 | 0.0017 | 9.9864 | | 6.5659 | 25.8152 | 800 | 0.0015 | 9.9258 | | 5.9719 | 29.0326 | 900 | 0.0015 | 9.9710 | | 5.4031 | 32.2609 | 1000 | 0.0011 | 9.9116 | | 4.9784 | 35.4891 | 1100 | 0.0012 | 9.9819 | | 4.6684 | 38.7174 | 1200 | 0.0009 | 10.0142 | | 4.3184 | 41.9783 | 1300 | 10.0483 | 0.0010 | | 4.1251 | 45.1957 | 1400 | 10.0964 | 0.0008 | | 3.909 | 48.4239 | 1500 | 10.1322 | 0.0009 | | 3.7535 | 51.6522 | 1600 | 10.1587 | 0.0009 | | 3.681 | 54.8804 | 1700 | 10.1785 | 0.0008 | | 3.688 | 58.0978 | 1800 | 10.1871 | 0.0008 | | 3.6685 | 61.3261 | 1900 | 10.1912 | 0.0008 | | 3.6326 | 64.5543 | 2000 | 10.1912 | 0.0008 | ### Framework versions - Transformers 4.52.3 - Pytorch 2.6.0 - Datasets 3.6.0 - Tokenizers 0.21.1