|
|
|
from transformers import pipeline |
|
|
|
pipe = pipeline("text-generation", model="ibm-granite/granite-3.3-8b-instruct") |
|
messages = [ |
|
{"role": "user", "content": "Who are you?"}, |
|
] |
|
pipe(messages) |
|
|
|
|
|
|
|
try: |
|
from granite_model import GraniteModelIntegration |
|
GRANITE_AVAILABLE = True |
|
except ImportError: |
|
GRANITE_AVAILABLE = False |
|
logger.warning("granite_model.py not found. Granite features will be disabled.") |
|
|
|
|
|
def __init__(self): |
|
self.summarizer = None |
|
self.sentiment_analyzer = None |
|
self.granite_integration = None |
|
self.cache = {} |
|
|
|
|
|
if TRANSFORMERS_AVAILABLE: |
|
self._initialize_ai_models() |
|
|
|
|
|
if GRANITE_AVAILABLE: |
|
try: |
|
self.granite_integration = GraniteModelIntegration() |
|
logger.info(f"Granite integration status: {'Available' if self.granite_integration.is_available() else 'Not Available'}") |
|
except Exception as e: |
|
logger.warning(f"Failed to initialize Granite integration: {e}") |
|
|
|
|
|
if NLTK_AVAILABLE: |
|
try: |
|
self.sentiment_analyzer = SentimentIntensityAnalyzer() |
|
except Exception as e: |
|
logger.warning(f"Failed to initialize sentiment analyzer: {e}") |
|
|
|
|
|
def granite_enhanced_summary(self, text: str, summary_type: str = "medium") -> str: |
|
"""Generate enhanced summary using Granite model""" |
|
if not (self.granite_integration and self.granite_integration.is_available()): |
|
return self.advanced_extractive_summary(text) |
|
|
|
return self.granite_integration.generate_summary(text, summary_type) |
|
|
|
def granite_analyze_document(self, text: str) -> Dict: |
|
"""Use Granite model for advanced document analysis""" |
|
if not (self.granite_integration and self.granite_integration.is_available()): |
|
return {'analysis_available': False} |
|
|
|
result = self.granite_integration.analyze_document(text) |
|
return { |
|
'granite_analysis': result.get('analysis', 'Analysis failed'), |
|
'analysis_available': result.get('success', False), |
|
'model_used': result.get('model_used', 'Unknown') |
|
} |
|
|
|
def granite_generate_questions(self, text: str, num_questions: int = 5) -> list: |
|
"""Generate comprehension questions using Granite""" |
|
if not (self.granite_integration and self.granite_integration.is_available()): |
|
return [] |
|
|
|
return self.granite_integration.generate_questions(text, num_questions) |
|
|
|
|
|
|
|
if summary_type == "ai": |
|
if self.granite_integration and self.granite_integration.is_available(): |
|
summary = self.granite_enhanced_summary(text, summary_length) |
|
elif self.summarizer: |
|
summary = self.ai_summary(text, params["max_length"], params["min_length"]) |
|
else: |
|
summary = self.advanced_extractive_summary(text, params["sentences"]) |
|
else: |
|
summary = self.advanced_extractive_summary(text, params["sentences"]) |
|
|
|
|
|
granite_analysis = self.granite_analyze_document(text) |
|
granite_questions = self.granite_generate_questions(text, 5) |
|
|
|
|
|
result = { |
|
'original_text': text[:2000] + "..." if len(text) > 2000 else text, |
|
'full_text_length': len(text), |
|
'summary': summary, |
|
'key_points': key_points, |
|
'outline': outline, |
|
'stats': stats, |
|
'granite_analysis': granite_analysis, |
|
'granite_questions': granite_questions, |
|
'readability_score': readability_score, |
|
'file_name': Path(file_path).name, |
|
'file_size': os.path.getsize(file_path), |
|
'processing_time': datetime.now().isoformat(), |
|
'summary_type': summary_type, |
|
'summary_length': summary_length, |
|
'model_used': 'Granite 3.2 8B' if (summary_type == "ai" and self.granite_integration and self.granite_integration.is_available()) else ('AI (BART/T5)' if self.summarizer else 'Extractive') |
|
} |
|
|
|
|
|
|
|
granite_questions_html = "" |
|
if result.get("granite_questions"): |
|
questions_list = "".join([f"<li style='margin-bottom: 10px; padding: 8px; background: rgba(255,255,255,0.1); border-radius: 6px;'>{q}</li>" |
|
for q in result["granite_questions"]]) |
|
granite_questions_html = f''' |
|
<div style="background: linear-gradient(135deg, #11998e 0%, #38ef7d 100%); color: white; padding: 20px; border-radius: 12px; margin: 15px 0; box-shadow: 0 6px 20px rgba(0,0,0,0.1);"> |
|
<h3>AI-Generated Questions</h3> |
|
<p style="margin-bottom: 15px; opacity: 0.9;">Test your understanding with these Granite-generated questions:</p> |
|
<ol style="padding-left: 20px; line-height: 1.6;"> |
|
{questions_list} |
|
</ol> |
|
</div> |
|
''' |
|
|
|
|
|
**Granite 3.2 8B:** {"✅ Available" if (GRANITE_AVAILABLE and hasattr(summarizer, 'granite_integration') and summarizer.granite_integration and summarizer.granite_integration.is_available()) else "❌ Not Available"} |