Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,1164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
import json
|
5 |
+
import tempfile
|
6 |
+
import hashlib
|
7 |
+
from pathlib import Path
|
8 |
+
from datetime import datetime
|
9 |
+
from typing import Dict, List, Tuple, Optional, Union
|
10 |
+
import logging
|
11 |
+
|
12 |
+
# Configure logging
|
13 |
+
logging.basicConfig(level=logging.INFO)
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
# Optional imports for document processing
|
17 |
+
try:
|
18 |
+
from docx import Document
|
19 |
+
DOCX_AVAILABLE = True
|
20 |
+
except ImportError:
|
21 |
+
DOCX_AVAILABLE = False
|
22 |
+
logger.warning("python-docx not installed. DOCX processing will be disabled.")
|
23 |
+
|
24 |
+
try:
|
25 |
+
import PyPDF2
|
26 |
+
PDF_AVAILABLE = True
|
27 |
+
except ImportError:
|
28 |
+
PDF_AVAILABLE = False
|
29 |
+
logger.warning("PyPDF2 not installed. PDF processing will be disabled.")
|
30 |
+
|
31 |
+
try:
|
32 |
+
import fitz # PyMuPDF - alternative PDF processor
|
33 |
+
PYMUPDF_AVAILABLE = True
|
34 |
+
except ImportError:
|
35 |
+
PYMUPDF_AVAILABLE = False
|
36 |
+
|
37 |
+
# Optional imports for advanced text processing
|
38 |
+
try:
|
39 |
+
import nltk
|
40 |
+
from nltk.tokenize import sent_tokenize, word_tokenize
|
41 |
+
from nltk.corpus import stopwords
|
42 |
+
from nltk.frequency import FreqDist
|
43 |
+
from nltk.sentiment import SentimentIntensityAnalyzer
|
44 |
+
NLTK_AVAILABLE = True
|
45 |
+
# Download required NLTK data
|
46 |
+
required_nltk_data = ['punkt', 'stopwords', 'vader_lexicon']
|
47 |
+
for data_name in required_nltk_data:
|
48 |
+
try:
|
49 |
+
if data_name == 'punkt':
|
50 |
+
nltk.data.find('tokenizers/punkt')
|
51 |
+
elif data_name == 'stopwords':
|
52 |
+
nltk.data.find('corpora/stopwords')
|
53 |
+
elif data_name == 'vader_lexicon':
|
54 |
+
nltk.data.find('vader_lexicon')
|
55 |
+
except LookupError:
|
56 |
+
nltk.download(data_name, quiet=True)
|
57 |
+
except ImportError:
|
58 |
+
NLTK_AVAILABLE = False
|
59 |
+
logger.warning("NLTK not installed. Advanced text analysis will be limited.")
|
60 |
+
|
61 |
+
try:
|
62 |
+
from transformers import pipeline
|
63 |
+
import torch
|
64 |
+
TRANSFORMERS_AVAILABLE = True
|
65 |
+
DEVICE = 0 if torch.cuda.is_available() else -1
|
66 |
+
except ImportError:
|
67 |
+
TRANSFORMERS_AVAILABLE = False
|
68 |
+
DEVICE = -1
|
69 |
+
logger.warning("transformers not installed. AI summarization will use basic extraction methods.")
|
70 |
+
|
71 |
+
class AdvancedDocumentSummarizer:
|
72 |
+
"""CatalystGPT-4 Advanced Document Summarizer with enhanced features"""
|
73 |
+
|
74 |
+
def __init__(self):
|
75 |
+
self.summarizer = None
|
76 |
+
self.sentiment_analyzer = None
|
77 |
+
self.cache = {}
|
78 |
+
|
79 |
+
# Initialize AI models
|
80 |
+
if TRANSFORMERS_AVAILABLE:
|
81 |
+
self._initialize_ai_models()
|
82 |
+
|
83 |
+
# Initialize sentiment analyzer
|
84 |
+
if NLTK_AVAILABLE:
|
85 |
+
try:
|
86 |
+
self.sentiment_analyzer = SentimentIntensityAnalyzer()
|
87 |
+
except Exception as e:
|
88 |
+
logger.warning(f"Failed to initialize sentiment analyzer: {e}")
|
89 |
+
|
90 |
+
def _initialize_ai_models(self):
|
91 |
+
"""Initialize AI models with error handling and fallbacks"""
|
92 |
+
models_to_try = [
|
93 |
+
"facebook/bart-large-cnn",
|
94 |
+
"t5-small",
|
95 |
+
"google/pegasus-xsum"
|
96 |
+
]
|
97 |
+
|
98 |
+
for model_name in models_to_try:
|
99 |
+
try:
|
100 |
+
self.summarizer = pipeline(
|
101 |
+
"summarization",
|
102 |
+
model=model_name,
|
103 |
+
device=DEVICE,
|
104 |
+
torch_dtype=torch.float16 if DEVICE >= 0 else torch.float32
|
105 |
+
)
|
106 |
+
logger.info(f"Successfully loaded {model_name}")
|
107 |
+
break
|
108 |
+
except Exception as e:
|
109 |
+
logger.warning(f"Failed to load {model_name}: {e}")
|
110 |
+
continue
|
111 |
+
|
112 |
+
def _get_file_hash(self, file_path: str) -> str:
|
113 |
+
"""Generate hash for file caching"""
|
114 |
+
try:
|
115 |
+
with open(file_path, 'rb') as f:
|
116 |
+
content = f.read()
|
117 |
+
return hashlib.md5(content).hexdigest()
|
118 |
+
except Exception:
|
119 |
+
return str(datetime.now().timestamp())
|
120 |
+
|
121 |
+
def extract_text_from_pdf(self, file_path: str) -> str:
|
122 |
+
"""Enhanced PDF text extraction with better error handling"""
|
123 |
+
text = ""
|
124 |
+
|
125 |
+
# Try PyMuPDF first (generally better)
|
126 |
+
if PYMUPDF_AVAILABLE:
|
127 |
+
try:
|
128 |
+
doc = fitz.open(file_path)
|
129 |
+
for page_num, page in enumerate(doc):
|
130 |
+
page_text = page.get_text()
|
131 |
+
if page_text.strip(): # Only add non-empty pages
|
132 |
+
text += f"\n--- Page {page_num + 1} ---\n{page_text}\n"
|
133 |
+
doc.close()
|
134 |
+
|
135 |
+
if text.strip():
|
136 |
+
return text
|
137 |
+
except Exception as e:
|
138 |
+
logger.error(f"PyMuPDF extraction failed: {e}")
|
139 |
+
|
140 |
+
# Fallback to PyPDF2
|
141 |
+
if PDF_AVAILABLE:
|
142 |
+
try:
|
143 |
+
with open(file_path, 'rb') as file:
|
144 |
+
pdf_reader = PyPDF2.PdfReader(file)
|
145 |
+
for page_num, page in enumerate(pdf_reader.pages):
|
146 |
+
page_text = page.extract_text()
|
147 |
+
if page_text.strip():
|
148 |
+
text += f"\n--- Page {page_num + 1} ---\n{page_text}\n"
|
149 |
+
|
150 |
+
if text.strip():
|
151 |
+
return text
|
152 |
+
except Exception as e:
|
153 |
+
logger.error(f"PyPDF2 extraction failed: {e}")
|
154 |
+
|
155 |
+
return "PDF processing libraries not available or extraction failed."
|
156 |
+
|
157 |
+
def extract_text_from_docx(self, file_path: str) -> str:
|
158 |
+
"""Enhanced DOCX extraction with better formatting preservation"""
|
159 |
+
if not DOCX_AVAILABLE:
|
160 |
+
return "python-docx library not available."
|
161 |
+
|
162 |
+
try:
|
163 |
+
doc = Document(file_path)
|
164 |
+
text_parts = []
|
165 |
+
|
166 |
+
# Extract paragraphs
|
167 |
+
for paragraph in doc.paragraphs:
|
168 |
+
if paragraph.text.strip():
|
169 |
+
text_parts.append(paragraph.text)
|
170 |
+
|
171 |
+
# Extract tables
|
172 |
+
for table_num, table in enumerate(doc.tables):
|
173 |
+
text_parts.append(f"\n--- Table {table_num + 1} ---")
|
174 |
+
for row in table.rows:
|
175 |
+
row_text = " | ".join(cell.text.strip() for cell in row.cells)
|
176 |
+
if row_text.strip():
|
177 |
+
text_parts.append(row_text)
|
178 |
+
|
179 |
+
return "\n".join(text_parts)
|
180 |
+
except Exception as e:
|
181 |
+
logger.error(f"Error processing DOCX file: {e}")
|
182 |
+
return f"Error processing DOCX file: {str(e)}"
|
183 |
+
|
184 |
+
def get_enhanced_document_stats(self, text: str) -> Dict:
|
185 |
+
"""Get comprehensive document statistics with sentiment analysis"""
|
186 |
+
if not text.strip():
|
187 |
+
return {}
|
188 |
+
|
189 |
+
# Basic stats
|
190 |
+
word_count = len(text.split())
|
191 |
+
char_count = len(text)
|
192 |
+
char_count_no_spaces = len(text.replace(' ', ''))
|
193 |
+
paragraph_count = len([p for p in text.split('\n\n') if p.strip()])
|
194 |
+
|
195 |
+
stats = {
|
196 |
+
'word_count': word_count,
|
197 |
+
'character_count': char_count,
|
198 |
+
'character_count_no_spaces': char_count_no_spaces,
|
199 |
+
'paragraph_count': paragraph_count,
|
200 |
+
'estimated_reading_time': max(1, round(word_count / 200)), # 200 WPM average
|
201 |
+
'estimated_speaking_time': max(1, round(word_count / 150)) # 150 WPM speaking
|
202 |
+
}
|
203 |
+
|
204 |
+
if NLTK_AVAILABLE:
|
205 |
+
sentences = sent_tokenize(text)
|
206 |
+
stats['sentence_count'] = len(sentences)
|
207 |
+
stats['avg_sentence_length'] = round(word_count / len(sentences), 1) if sentences else 0
|
208 |
+
|
209 |
+
# Word frequency analysis
|
210 |
+
words = word_tokenize(text.lower())
|
211 |
+
stop_words = set(stopwords.words('english'))
|
212 |
+
filtered_words = [w for w in words if w.isalpha() and w not in stop_words and len(w) > 2]
|
213 |
+
|
214 |
+
if filtered_words:
|
215 |
+
freq_dist = FreqDist(filtered_words)
|
216 |
+
stats['top_words'] = freq_dist.most_common(15)
|
217 |
+
stats['unique_words'] = len(set(filtered_words))
|
218 |
+
stats['lexical_diversity'] = round(len(set(filtered_words)) / len(filtered_words), 3) if filtered_words else 0
|
219 |
+
|
220 |
+
# Sentiment analysis
|
221 |
+
if self.sentiment_analyzer:
|
222 |
+
try:
|
223 |
+
sentiment_scores = self.sentiment_analyzer.polarity_scores(text[:5000]) # Limit for performance
|
224 |
+
stats['sentiment'] = {
|
225 |
+
'compound': round(sentiment_scores['compound'], 3),
|
226 |
+
'positive': round(sentiment_scores['pos'], 3),
|
227 |
+
'negative': round(sentiment_scores['neg'], 3),
|
228 |
+
'neutral': round(sentiment_scores['neu'], 3)
|
229 |
+
}
|
230 |
+
except Exception as e:
|
231 |
+
logger.error(f"Sentiment analysis failed: {e}")
|
232 |
+
else:
|
233 |
+
# Fallback without NLTK
|
234 |
+
sentences = [s.strip() for s in text.split('.') if s.strip()]
|
235 |
+
stats['sentence_count'] = len(sentences)
|
236 |
+
stats['avg_sentence_length'] = round(word_count / len(sentences), 1) if sentences else 0
|
237 |
+
|
238 |
+
words = re.findall(r'\b\w+\b', text.lower())
|
239 |
+
word_freq = {}
|
240 |
+
for word in words:
|
241 |
+
if len(word) > 2:
|
242 |
+
word_freq[word] = word_freq.get(word, 0) + 1
|
243 |
+
|
244 |
+
stats['top_words'] = sorted(word_freq.items(), key=lambda x: x[1], reverse=True)[:15]
|
245 |
+
stats['unique_words'] = len(set(words))
|
246 |
+
|
247 |
+
return stats
|
248 |
+
|
249 |
+
def advanced_extractive_summary(self, text: str, num_sentences: int = 3) -> str:
|
250 |
+
"""Enhanced extractive summarization with improved sentence scoring"""
|
251 |
+
if not text.strip():
|
252 |
+
return "No text to summarize."
|
253 |
+
|
254 |
+
if NLTK_AVAILABLE:
|
255 |
+
sentences = sent_tokenize(text)
|
256 |
+
else:
|
257 |
+
sentences = [s.strip() for s in re.split(r'[.!?]+', text) if s.strip()]
|
258 |
+
|
259 |
+
if len(sentences) <= num_sentences:
|
260 |
+
return text
|
261 |
+
|
262 |
+
# Enhanced sentence scoring
|
263 |
+
scored_sentences = []
|
264 |
+
total_sentences = len(sentences)
|
265 |
+
|
266 |
+
# Calculate word frequencies for TF scoring
|
267 |
+
all_words = re.findall(r'\b\w+\b', text.lower())
|
268 |
+
word_freq = {}
|
269 |
+
for word in all_words:
|
270 |
+
if len(word) > 2:
|
271 |
+
word_freq[word] = word_freq.get(word, 0) + 1
|
272 |
+
|
273 |
+
# Important keywords that boost sentence scores
|
274 |
+
importance_keywords = [
|
275 |
+
'conclusion', 'summary', 'result', 'finding', 'important', 'significant',
|
276 |
+
'key', 'main', 'primary', 'essential', 'crucial', 'objective', 'goal',
|
277 |
+
'recommendation', 'suggest', 'propose', 'indicate', 'show', 'demonstrate'
|
278 |
+
]
|
279 |
+
|
280 |
+
for i, sentence in enumerate(sentences):
|
281 |
+
if len(sentence.split()) < 5: # Skip very short sentences
|
282 |
+
continue
|
283 |
+
|
284 |
+
score = 0
|
285 |
+
sentence_lower = sentence.lower()
|
286 |
+
sentence_words = sentence.split()
|
287 |
+
|
288 |
+
# Position scoring (beginning and end are more important)
|
289 |
+
if i < total_sentences * 0.15: # First 15%
|
290 |
+
score += 3
|
291 |
+
elif i > total_sentences * 0.85: # Last 15%
|
292 |
+
score += 2
|
293 |
+
elif total_sentences * 0.4 <= i <= total_sentences * 0.6: # Middle section
|
294 |
+
score += 1
|
295 |
+
|
296 |
+
# Length scoring (prefer moderate length)
|
297 |
+
word_count = len(sentence_words)
|
298 |
+
if 12 <= word_count <= 25:
|
299 |
+
score += 3
|
300 |
+
elif 8 <= word_count <= 35:
|
301 |
+
score += 2
|
302 |
+
elif 5 <= word_count <= 45:
|
303 |
+
score += 1
|
304 |
+
|
305 |
+
# Keyword importance scoring
|
306 |
+
keyword_score = sum(2 if keyword in sentence_lower else 0 for keyword in importance_keywords)
|
307 |
+
score += min(keyword_score, 6) # Cap keyword bonus
|
308 |
+
|
309 |
+
# TF-based scoring (frequency of important words)
|
310 |
+
tf_score = 0
|
311 |
+
for word in sentence_words:
|
312 |
+
word_lower = word.lower()
|
313 |
+
if word_lower in word_freq and len(word_lower) > 3:
|
314 |
+
tf_score += min(word_freq[word_lower], 5) # Cap individual word contribution
|
315 |
+
score += min(tf_score / len(sentence_words), 3) # Normalize by sentence length
|
316 |
+
|
317 |
+
# Structural indicators
|
318 |
+
if any(indicator in sentence for indicator in [':', 'β', '"', '(']):
|
319 |
+
score += 1
|
320 |
+
|
321 |
+
# Numerical data (often important)
|
322 |
+
if re.search(r'\b\d+(?:\.\d+)?%?\b', sentence):
|
323 |
+
score += 1
|
324 |
+
|
325 |
+
scored_sentences.append((sentence, score, i))
|
326 |
+
|
327 |
+
# Sort by score and select top sentences
|
328 |
+
scored_sentences.sort(key=lambda x: x[1], reverse=True)
|
329 |
+
selected_sentences = scored_sentences[:num_sentences]
|
330 |
+
|
331 |
+
# Sort selected sentences by original position to maintain flow
|
332 |
+
selected_sentences.sort(key=lambda x: x[2])
|
333 |
+
|
334 |
+
return ' '.join([s[0] for s in selected_sentences])
|
335 |
+
|
336 |
+
def intelligent_chunking(self, text: str, max_chunk_size: int = 1024) -> List[str]:
|
337 |
+
"""Intelligently chunk text while preserving semantic boundaries"""
|
338 |
+
if len(text) <= max_chunk_size:
|
339 |
+
return [text]
|
340 |
+
|
341 |
+
chunks = []
|
342 |
+
|
343 |
+
# Try to split by double newlines first (paragraphs)
|
344 |
+
paragraphs = text.split('\n\n')
|
345 |
+
current_chunk = ""
|
346 |
+
|
347 |
+
for paragraph in paragraphs:
|
348 |
+
# If single paragraph is too long, split by sentences
|
349 |
+
if len(paragraph) > max_chunk_size:
|
350 |
+
if current_chunk:
|
351 |
+
chunks.append(current_chunk.strip())
|
352 |
+
current_chunk = ""
|
353 |
+
|
354 |
+
# Split long paragraph by sentences
|
355 |
+
if NLTK_AVAILABLE:
|
356 |
+
sentences = sent_tokenize(paragraph)
|
357 |
+
else:
|
358 |
+
sentences = [s.strip() for s in paragraph.split('.') if s.strip()]
|
359 |
+
|
360 |
+
temp_chunk = ""
|
361 |
+
for sentence in sentences:
|
362 |
+
if len(temp_chunk + sentence) <= max_chunk_size:
|
363 |
+
temp_chunk += sentence + ". "
|
364 |
+
else:
|
365 |
+
if temp_chunk:
|
366 |
+
chunks.append(temp_chunk.strip())
|
367 |
+
temp_chunk = sentence + ". "
|
368 |
+
|
369 |
+
if temp_chunk:
|
370 |
+
current_chunk = temp_chunk
|
371 |
+
else:
|
372 |
+
# Normal paragraph processing
|
373 |
+
if len(current_chunk + paragraph) <= max_chunk_size:
|
374 |
+
current_chunk += paragraph + "\n\n"
|
375 |
+
else:
|
376 |
+
if current_chunk:
|
377 |
+
chunks.append(current_chunk.strip())
|
378 |
+
current_chunk = paragraph + "\n\n"
|
379 |
+
|
380 |
+
if current_chunk:
|
381 |
+
chunks.append(current_chunk.strip())
|
382 |
+
|
383 |
+
return [chunk for chunk in chunks if chunk.strip()]
|
384 |
+
|
385 |
+
def ai_summary(self, text: str, max_length: int = 150, min_length: int = 50) -> str:
|
386 |
+
"""Enhanced AI-powered summarization with better chunking and error handling"""
|
387 |
+
if not self.summarizer:
|
388 |
+
return self.advanced_extractive_summary(text)
|
389 |
+
|
390 |
+
try:
|
391 |
+
# Intelligent chunking
|
392 |
+
chunks = self.intelligent_chunking(text, 1000) # Slightly smaller chunks for better quality
|
393 |
+
|
394 |
+
if not chunks:
|
395 |
+
return "No meaningful content found for summarization."
|
396 |
+
|
397 |
+
summaries = []
|
398 |
+
for i, chunk in enumerate(chunks):
|
399 |
+
if len(chunk.strip()) < 50: # Skip very short chunks
|
400 |
+
continue
|
401 |
+
|
402 |
+
try:
|
403 |
+
# Adjust parameters based on chunk size
|
404 |
+
chunk_max_length = min(max_length, max(50, len(chunk.split()) // 3))
|
405 |
+
chunk_min_length = min(min_length, chunk_max_length // 2)
|
406 |
+
|
407 |
+
summary = self.summarizer(
|
408 |
+
chunk,
|
409 |
+
max_length=chunk_max_length,
|
410 |
+
min_length=chunk_min_length,
|
411 |
+
do_sample=False,
|
412 |
+
truncation=True
|
413 |
+
)
|
414 |
+
summaries.append(summary[0]['summary_text'])
|
415 |
+
|
416 |
+
except Exception as e:
|
417 |
+
logger.warning(f"Error summarizing chunk {i}: {e}")
|
418 |
+
# Fallback to extractive summary for this chunk
|
419 |
+
fallback_summary = self.advanced_extractive_summary(chunk, 2)
|
420 |
+
if fallback_summary and fallback_summary != "No text to summarize.":
|
421 |
+
summaries.append(fallback_summary)
|
422 |
+
|
423 |
+
if not summaries:
|
424 |
+
return self.advanced_extractive_summary(text)
|
425 |
+
|
426 |
+
# Combine and refine summaries
|
427 |
+
if len(summaries) == 1:
|
428 |
+
return summaries[0]
|
429 |
+
else:
|
430 |
+
combined_summary = ' '.join(summaries)
|
431 |
+
|
432 |
+
# If combined summary is still too long, summarize again
|
433 |
+
if len(combined_summary.split()) > max_length * 1.5:
|
434 |
+
try:
|
435 |
+
final_summary = self.summarizer(
|
436 |
+
combined_summary,
|
437 |
+
max_length=max_length,
|
438 |
+
min_length=min_length,
|
439 |
+
do_sample=False,
|
440 |
+
truncation=True
|
441 |
+
)
|
442 |
+
return final_summary[0]['summary_text']
|
443 |
+
except Exception:
|
444 |
+
return combined_summary[:max_length * 10] # Rough character limit fallback
|
445 |
+
|
446 |
+
return combined_summary
|
447 |
+
|
448 |
+
except Exception as e:
|
449 |
+
logger.error(f"AI summarization failed: {e}")
|
450 |
+
return self.advanced_extractive_summary(text)
|
451 |
+
|
452 |
+
def generate_enhanced_key_points(self, text: str, num_points: int = 7) -> List[str]:
|
453 |
+
"""Generate key points with improved extraction and categorization"""
|
454 |
+
if not text.strip():
|
455 |
+
return []
|
456 |
+
|
457 |
+
if NLTK_AVAILABLE:
|
458 |
+
sentences = sent_tokenize(text)
|
459 |
+
else:
|
460 |
+
sentences = [s.strip() for s in re.split(r'[.!?]+', text) if s.strip()]
|
461 |
+
|
462 |
+
# Enhanced key point indicators with categories
|
463 |
+
key_indicators = {
|
464 |
+
'conclusions': ['conclusion', 'conclude', 'result', 'outcome', 'finding', 'discovered'],
|
465 |
+
'objectives': ['objective', 'goal', 'purpose', 'aim', 'target', 'mission'],
|
466 |
+
'methods': ['method', 'approach', 'technique', 'procedure', 'process', 'way'],
|
467 |
+
'importance': ['important', 'significant', 'crucial', 'essential', 'key', 'main', 'primary'],
|
468 |
+
'recommendations': ['recommend', 'suggest', 'propose', 'should', 'must', 'need to'],
|
469 |
+
'problems': ['problem', 'issue', 'challenge', 'difficulty', 'obstacle', 'concern'],
|
470 |
+
'benefits': ['benefit', 'advantage', 'improvement', 'enhancement', 'positive', 'gain']
|
471 |
+
}
|
472 |
+
|
473 |
+
scored_sentences = []
|
474 |
+
for sentence in sentences:
|
475 |
+
if len(sentence.split()) < 6: # Skip very short sentences
|
476 |
+
continue
|
477 |
+
|
478 |
+
score = 0
|
479 |
+
sentence_lower = sentence.lower()
|
480 |
+
category = 'general'
|
481 |
+
|
482 |
+
# Category-based scoring
|
483 |
+
for cat, indicators in key_indicators.items():
|
484 |
+
category_score = sum(2 if indicator in sentence_lower else 0 for indicator in indicators)
|
485 |
+
if category_score > score:
|
486 |
+
score = category_score
|
487 |
+
category = cat
|
488 |
+
|
489 |
+
# Structural scoring
|
490 |
+
if sentence.strip().startswith(('β’', '-', '1.', '2.', '3.', '4.', '5.')):
|
491 |
+
score += 4
|
492 |
+
|
493 |
+
# Punctuation indicators
|
494 |
+
if any(punct in sentence for punct in [':', ';', 'β', '"']):
|
495 |
+
score += 1
|
496 |
+
|
497 |
+
# Length scoring (prefer moderate length for key points)
|
498 |
+
word_count = len(sentence.split())
|
499 |
+
if 8 <= word_count <= 20:
|
500 |
+
score += 3
|
501 |
+
elif 6 <= word_count <= 30:
|
502 |
+
score += 2
|
503 |
+
elif 4 <= word_count <= 40:
|
504 |
+
score += 1
|
505 |
+
|
506 |
+
# Numerical data bonus
|
507 |
+
if re.search(r'\b\d+(?:\.\d+)?%?\b', sentence):
|
508 |
+
score += 2
|
509 |
+
|
510 |
+
# Avoid very generic sentences
|
511 |
+
generic_words = ['the', 'this', 'that', 'there', 'it', 'they']
|
512 |
+
if sentence.split()[0].lower() in generic_words:
|
513 |
+
score -= 1
|
514 |
+
|
515 |
+
if score > 0:
|
516 |
+
scored_sentences.append((sentence.strip(), score, category))
|
517 |
+
|
518 |
+
# Sort by score and diversify by category
|
519 |
+
scored_sentences.sort(key=lambda x: x[1], reverse=True)
|
520 |
+
|
521 |
+
# Select diverse key points
|
522 |
+
selected_points = []
|
523 |
+
used_categories = set()
|
524 |
+
|
525 |
+
# First pass: get the highest scoring point from each category
|
526 |
+
for sentence, score, category in scored_sentences:
|
527 |
+
if len(selected_points) >= num_points:
|
528 |
+
break
|
529 |
+
if category not in used_categories:
|
530 |
+
selected_points.append(sentence)
|
531 |
+
used_categories.add(category)
|
532 |
+
|
533 |
+
# Second pass: fill remaining slots with highest scoring sentences
|
534 |
+
for sentence, score, category in scored_sentences:
|
535 |
+
if len(selected_points) >= num_points:
|
536 |
+
break
|
537 |
+
if sentence not in selected_points:
|
538 |
+
selected_points.append(sentence)
|
539 |
+
|
540 |
+
return selected_points[:num_points]
|
541 |
+
|
542 |
+
def generate_document_outline(self, text: str) -> List[str]:
|
543 |
+
"""Generate a structured outline of the document"""
|
544 |
+
if not text.strip():
|
545 |
+
return []
|
546 |
+
|
547 |
+
lines = text.split('\n')
|
548 |
+
outline = []
|
549 |
+
|
550 |
+
# Look for headers, numbered sections, etc.
|
551 |
+
header_patterns = [
|
552 |
+
r'^#{1,6}\s+(.+)$', # Markdown headers
|
553 |
+
r'^(\d+\.?\s+[A-Z][^.]{10,})$', # Numbered sections
|
554 |
+
r'^([A-Z][A-Z\s]{5,})$', # ALL CAPS headers
|
555 |
+
r'^([A-Z][a-z\s]{10,}:)$', # Title Case with colon
|
556 |
+
]
|
557 |
+
|
558 |
+
for line in lines:
|
559 |
+
line = line.strip()
|
560 |
+
if not line:
|
561 |
+
continue
|
562 |
+
|
563 |
+
for pattern in header_patterns:
|
564 |
+
match = re.match(pattern, line)
|
565 |
+
if match:
|
566 |
+
outline.append(match.group(1).strip())
|
567 |
+
break
|
568 |
+
|
569 |
+
return outline[:10] # Limit to 10 outline items
|
570 |
+
|
571 |
+
def process_document(self, file_path: str, summary_type: str = "ai",
|
572 |
+
summary_length: str = "medium") -> Tuple[Optional[Dict], Optional[str]]:
|
573 |
+
"""Enhanced document processing with caching and comprehensive analysis"""
|
574 |
+
if not file_path:
|
575 |
+
return None, "No file provided."
|
576 |
+
|
577 |
+
try:
|
578 |
+
# Check cache
|
579 |
+
file_hash = self._get_file_hash(file_path)
|
580 |
+
cache_key = f"{file_hash}_{summary_type}_{summary_length}"
|
581 |
+
|
582 |
+
if cache_key in self.cache:
|
583 |
+
logger.info("Returning cached result")
|
584 |
+
return self.cache[cache_key], None
|
585 |
+
|
586 |
+
# Extract text based on file type
|
587 |
+
file_extension = Path(file_path).suffix.lower()
|
588 |
+
|
589 |
+
if file_extension == '.pdf':
|
590 |
+
text = self.extract_text_from_pdf(file_path)
|
591 |
+
elif file_extension == '.docx':
|
592 |
+
text = self.extract_text_from_docx(file_path)
|
593 |
+
elif file_extension in ['.txt', '.md', '.rtf']:
|
594 |
+
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
|
595 |
+
text = f.read()
|
596 |
+
else:
|
597 |
+
return None, f"Unsupported file type: {file_extension}"
|
598 |
+
|
599 |
+
if not text.strip() or "not available" in text.lower():
|
600 |
+
return None, "No text could be extracted from the document or extraction failed."
|
601 |
+
|
602 |
+
# Clean text
|
603 |
+
text = re.sub(r'\n{3,}', '\n\n', text) # Reduce excessive newlines
|
604 |
+
text = re.sub(r' {2,}', ' ', text) # Reduce excessive spaces
|
605 |
+
|
606 |
+
# Get comprehensive statistics
|
607 |
+
stats = self.get_enhanced_document_stats(text)
|
608 |
+
|
609 |
+
# Generate summary based on type and length
|
610 |
+
length_params = {
|
611 |
+
"short": {"sentences": 2, "max_length": 80, "min_length": 30},
|
612 |
+
"medium": {"sentences": 4, "max_length": 150, "min_length": 50},
|
613 |
+
"long": {"sentences": 6, "max_length": 250, "min_length": 100},
|
614 |
+
"detailed": {"sentences": 8, "max_length": 400, "min_length": 150}
|
615 |
+
}
|
616 |
+
|
617 |
+
params = length_params.get(summary_length, length_params["medium"])
|
618 |
+
|
619 |
+
# Generate summary
|
620 |
+
if summary_type == "ai" and self.summarizer:
|
621 |
+
summary = self.ai_summary(text, params["max_length"], params["min_length"])
|
622 |
+
else:
|
623 |
+
summary = self.advanced_extractive_summary(text, params["sentences"])
|
624 |
+
|
625 |
+
# Generate enhanced features
|
626 |
+
key_points = self.generate_enhanced_key_points(text, 7)
|
627 |
+
outline = self.generate_document_outline(text)
|
628 |
+
|
629 |
+
# Calculate readability (simple approximation)
|
630 |
+
avg_sentence_length = stats.get('avg_sentence_length', 0)
|
631 |
+
readability_score = max(0, min(100, 100 - (avg_sentence_length * 2)))
|
632 |
+
|
633 |
+
result = {
|
634 |
+
'original_text': text[:2000] + "..." if len(text) > 2000 else text, # Truncate for display
|
635 |
+
'full_text_length': len(text),
|
636 |
+
'summary': summary,
|
637 |
+
'key_points': key_points,
|
638 |
+
'outline': outline,
|
639 |
+
'stats': stats,
|
640 |
+
'readability_score': readability_score,
|
641 |
+
'file_name': Path(file_path).name,
|
642 |
+
'file_size': os.path.getsize(file_path),
|
643 |
+
'processing_time': datetime.now().isoformat(),
|
644 |
+
'summary_type': summary_type,
|
645 |
+
'summary_length': summary_length,
|
646 |
+
'model_used': 'AI (BART/T5)' if self.summarizer else 'Extractive'
|
647 |
+
}
|
648 |
+
|
649 |
+
# Cache result
|
650 |
+
self.cache[cache_key] = result
|
651 |
+
|
652 |
+
return result, None
|
653 |
+
|
654 |
+
except Exception as e:
|
655 |
+
logger.error(f"Document processing error: {e}")
|
656 |
+
return None, f"Error processing document: {str(e)}"
|
657 |
+
|
658 |
+
def create_catalyst_interface():
|
659 |
+
"""Create the CatalystGPT-4 document summarizer interface"""
|
660 |
+
|
661 |
+
summarizer = AdvancedDocumentSummarizer()
|
662 |
+
|
663 |
+
# Enhanced CSS with modern styling
|
664 |
+
css = """
|
665 |
+
.catalyst-header {
|
666 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
667 |
+
color: white;
|
668 |
+
padding: 30px;
|
669 |
+
border-radius: 20px;
|
670 |
+
text-align: center;
|
671 |
+
margin-bottom: 25px;
|
672 |
+
box-shadow: 0 10px 30px rgba(0,0,0,0.2);
|
673 |
+
}
|
674 |
+
|
675 |
+
.summary-container {
|
676 |
+
background: linear-gradient(135deg, #4facfe 0%, #00f2fe 100%);
|
677 |
+
color: white;
|
678 |
+
padding: 25px;
|
679 |
+
border-radius: 15px;
|
680 |
+
margin: 15px 0;
|
681 |
+
box-shadow: 0 8px 25px rgba(0,0,0,0.15);
|
682 |
+
}
|
683 |
+
|
684 |
+
.stats-container {
|
685 |
+
background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
|
686 |
+
color: white;
|
687 |
+
padding: 20px;
|
688 |
+
border-radius: 12px;
|
689 |
+
margin: 15px 0;
|
690 |
+
box-shadow: 0 6px 20px rgba(0,0,0,0.1);
|
691 |
+
}
|
692 |
+
|
693 |
+
.key-points-container {
|
694 |
+
background: linear-gradient(135deg, #4ecdc4 0%, #44a08d 100%);
|
695 |
+
color: white;
|
696 |
+
padding: 20px;
|
697 |
+
border-radius: 12px;
|
698 |
+
margin: 15px 0;
|
699 |
+
box-shadow: 0 6px 20px rgba(0,0,0,0.1);
|
700 |
+
}
|
701 |
+
|
702 |
+
.outline-container {
|
703 |
+
background: linear-gradient(135deg, #fa709a 0%, #fee140 100%);
|
704 |
+
color: white;
|
705 |
+
padding: 20px;
|
706 |
+
border-radius: 12px;
|
707 |
+
margin: 15px 0;
|
708 |
+
box-shadow: 0 6px 20px rgba(0,0,0,0.1);
|
709 |
+
}
|
710 |
+
|
711 |
+
.error-container {
|
712 |
+
background: linear-gradient(135deg, #ff9a9e 0%, #fecfef 100%);
|
713 |
+
color: #721c24;
|
714 |
+
padding: 20px;
|
715 |
+
border-radius: 12px;
|
716 |
+
margin: 15px 0;
|
717 |
+
border-left: 5px solid #dc3545;
|
718 |
+
}
|
719 |
+
|
720 |
+
.control-panel {
|
721 |
+
background: linear-gradient(135deg, #f6f9fc 0%, #e9ecef 100%);
|
722 |
+
padding: 25px;
|
723 |
+
border-radius: 15px;
|
724 |
+
margin: 15px 0;
|
725 |
+
border: 1px solid #dee2e6;
|
726 |
+
box-shadow: 0 4px 15px rgba(0,0,0,0.05);
|
727 |
+
}
|
728 |
+
|
729 |
+
.file-upload-area {
|
730 |
+
border: 3px dashed #007bff;
|
731 |
+
border-radius: 15px;
|
732 |
+
padding: 40px;
|
733 |
+
text-align: center;
|
734 |
+
background: linear-gradient(135deg, #f8f9ff 0%, #e3f2fd 100%);
|
735 |
+
transition: all 0.3s ease;
|
736 |
+
margin: 15px 0;
|
737 |
+
}
|
738 |
+
|
739 |
+
.file-upload-area:hover {
|
740 |
+
border-color: #0056b3;
|
741 |
+
background: linear-gradient(135deg, #f0f7ff 0%, #e1f5fe 100%);
|
742 |
+
transform: translateY(-2px);
|
743 |
+
}
|
744 |
+
|
745 |
+
.metric-card {
|
746 |
+
background: white;
|
747 |
+
padding: 15px;
|
748 |
+
border-radius: 10px;
|
749 |
+
margin: 5px;
|
750 |
+
box-shadow: 0 2px 8px rgba(0,0,0,0.1);
|
751 |
+
text-align: center;
|
752 |
+
}
|
753 |
+
|
754 |
+
.sentiment-indicator {
|
755 |
+
display: inline-block;
|
756 |
+
padding: 5px 12px;
|
757 |
+
border-radius: 20px;
|
758 |
+
font-weight: bold;
|
759 |
+
font-size: 12px;
|
760 |
+
margin: 2px;
|
761 |
+
}
|
762 |
+
|
763 |
+
.sentiment-positive { background: #d4edda; color: #155724; }
|
764 |
+
.sentiment-negative { background: #f8d7da; color: #721c24; }
|
765 |
+
.sentiment-neutral { background: #d1ecf1; color: #0c5460; }
|
766 |
+
|
767 |
+
.progress-bar {
|
768 |
+
background: #e9ecef;
|
769 |
+
border-radius: 10px;
|
770 |
+
overflow: hidden;
|
771 |
+
height: 8px;
|
772 |
+
margin: 5px 0;
|
773 |
+
}
|
774 |
+
|
775 |
+
.progress-fill {
|
776 |
+
height: 100%;
|
777 |
+
background: linear-gradient(90deg, #28a745, #20c997);
|
778 |
+
transition: width 0.3s ease;
|
779 |
+
}
|
780 |
+
"""
|
781 |
+
|
782 |
+
def format_file_size(size_bytes):
|
783 |
+
"""Convert bytes to human readable format"""
|
784 |
+
for unit in ['B', 'KB', 'MB', 'GB']:
|
785 |
+
if size_bytes < 1024.0:
|
786 |
+
return f"{size_bytes:.1f} {unit}"
|
787 |
+
size_bytes /= 1024.0
|
788 |
+
return f"{size_bytes:.1f} TB"
|
789 |
+
|
790 |
+
def get_sentiment_indicator(sentiment_score):
|
791 |
+
"""Get sentiment indicator HTML"""
|
792 |
+
if sentiment_score > 0.1:
|
793 |
+
return '<span class="sentiment-indicator sentiment-positive">π Positive</span>'
|
794 |
+
elif sentiment_score < -0.1:
|
795 |
+
return '<span class="sentiment-indicator sentiment-negative">π Negative</span>'
|
796 |
+
else:
|
797 |
+
return '<span class="sentiment-indicator sentiment-neutral">π Neutral</span>'
|
798 |
+
|
799 |
+
def process_and_display(file, summary_type, summary_length, enable_ai_features):
|
800 |
+
"""Enhanced processing with comprehensive results display"""
|
801 |
+
if file is None:
|
802 |
+
return (
|
803 |
+
gr.update(visible=False),
|
804 |
+
gr.update(visible=False),
|
805 |
+
gr.update(visible=False),
|
806 |
+
gr.update(visible=False),
|
807 |
+
gr.update(value="""
|
808 |
+
<div style="text-align: center; padding: 60px; color: #666;">
|
809 |
+
<h3>π CatalystGPT-4 Ready</h3>
|
810 |
+
<p>Upload a document to begin advanced AI-powered analysis</p>
|
811 |
+
<p><small>Supports: PDF, Word (.docx), Text (.txt, .md, .rtf)</small></p>
|
812 |
+
</div>
|
813 |
+
""", visible=True)
|
814 |
+
)
|
815 |
+
|
816 |
+
try:
|
817 |
+
# Use AI features based on toggle
|
818 |
+
actual_summary_type = summary_type if enable_ai_features else "extractive"
|
819 |
+
|
820 |
+
result, error = summarizer.process_document(file.name, actual_summary_type, summary_length)
|
821 |
+
|
822 |
+
if error:
|
823 |
+
error_html = f'''
|
824 |
+
<div class="error-container">
|
825 |
+
<h4>β Processing Error</h4>
|
826 |
+
<p><strong>Error:</strong> {error}</p>
|
827 |
+
<p><small>Please try a different file or check the file format.</small></p>
|
828 |
+
</div>
|
829 |
+
'''
|
830 |
+
return (
|
831 |
+
gr.update(visible=False),
|
832 |
+
gr.update(visible=False),
|
833 |
+
gr.update(visible=False),
|
834 |
+
gr.update(visible=False),
|
835 |
+
gr.update(value=error_html, visible=True)
|
836 |
+
)
|
837 |
+
|
838 |
+
# Format summary display
|
839 |
+
summary_html = f'''
|
840 |
+
<div class="summary-container">
|
841 |
+
<h3>π― Document Summary</h3>
|
842 |
+
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 15px; margin-bottom: 15px;">
|
843 |
+
<div><strong>π File:</strong> {result["file_name"]}</div>
|
844 |
+
<div><strong>π Size:</strong> {format_file_size(result["file_size"])}</div>
|
845 |
+
<div><strong>π€ Model:</strong> {result["model_used"]}</div>
|
846 |
+
<div><strong>π Length:</strong> {result["summary_length"].title()}</div>
|
847 |
+
</div>
|
848 |
+
<div style="background: rgba(255,255,255,0.15); padding: 20px; border-radius: 10px; line-height: 1.6;">
|
849 |
+
{result["summary"]}
|
850 |
+
</div>
|
851 |
+
</div>
|
852 |
+
'''
|
853 |
+
|
854 |
+
# Format comprehensive statistics
|
855 |
+
stats = result["stats"]
|
856 |
+
readability = result["readability_score"]
|
857 |
+
|
858 |
+
# Create readability indicator
|
859 |
+
readability_color = "#28a745" if readability > 70 else "#ffc107" if readability > 40 else "#dc3545"
|
860 |
+
readability_text = "Easy" if readability > 70 else "Moderate" if readability > 40 else "Complex"
|
861 |
+
|
862 |
+
stats_html = f'''
|
863 |
+
<div class="stats-container">
|
864 |
+
<h3>π Document Analytics</h3>
|
865 |
+
|
866 |
+
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 15px; margin: 20px 0;">
|
867 |
+
<div class="metric-card">
|
868 |
+
<h4 style="margin: 0; color: #007bff;">π {stats["word_count"]:,}</h4>
|
869 |
+
<small>Words</small>
|
870 |
+
</div>
|
871 |
+
<div class="metric-card">
|
872 |
+
<h4 style="margin: 0; color: #28a745;">β±οΈ {stats["estimated_reading_time"]} min</h4>
|
873 |
+
<small>Reading Time</small>
|
874 |
+
</div>
|
875 |
+
<div class="metric-card">
|
876 |
+
<h4 style="margin: 0; color: #17a2b8;">π {stats["sentence_count"]:,}</h4>
|
877 |
+
<small>Sentences</small>
|
878 |
+
</div>
|
879 |
+
<div class="metric-card">
|
880 |
+
<h4 style="margin: 0; color: #6f42c1;">π§ {stats.get("unique_words", "N/A")}</h4>
|
881 |
+
<small>Unique Words</small>
|
882 |
+
</div>
|
883 |
+
</div>
|
884 |
+
|
885 |
+
<div style="margin: 20px 0;">
|
886 |
+
<h4>π Readability Score</h4>
|
887 |
+
<div class="progress-bar">
|
888 |
+
<div class="progress-fill" style="width: {readability}%; background-color: {readability_color};"></div>
|
889 |
+
</div>
|
890 |
+
<p><strong>{readability:.1f}/100</strong> - {readability_text} to read</p>
|
891 |
+
</div>
|
892 |
+
'''
|
893 |
+
|
894 |
+
# Add sentiment analysis if available
|
895 |
+
if stats.get('sentiment'):
|
896 |
+
sentiment = stats['sentiment']
|
897 |
+
sentiment_html = get_sentiment_indicator(sentiment['compound'])
|
898 |
+
stats_html += f'''
|
899 |
+
<div style="margin: 20px 0;">
|
900 |
+
<h4>π Document Sentiment</h4>
|
901 |
+
{sentiment_html}
|
902 |
+
<div style="display: grid; grid-template-columns: repeat(3, 1fr); gap: 10px; margin-top: 10px;">
|
903 |
+
<small>Positive: {sentiment['positive']:.2f}</small>
|
904 |
+
<small>Negative: {sentiment['negative']:.2f}</small>
|
905 |
+
<small>Neutral: {sentiment['neutral']:.2f}</small>
|
906 |
+
</div>
|
907 |
+
</div>
|
908 |
+
'''
|
909 |
+
|
910 |
+
# Add word frequency
|
911 |
+
if stats.get('top_words'):
|
912 |
+
stats_html += f'''
|
913 |
+
<div style="margin: 20px 0;">
|
914 |
+
<h4>π€ Most Frequent Words</h4>
|
915 |
+
<div style="display: flex; flex-wrap: wrap; gap: 8px; margin-top: 10px;">
|
916 |
+
{" ".join([f'<span style="background: rgba(255,255,255,0.2); padding: 6px 12px; border-radius: 15px; font-size: 13px;">{word} ({count})</span>' for word, count in stats["top_words"][:10]])}
|
917 |
+
</div>
|
918 |
+
</div>
|
919 |
+
'''
|
920 |
+
|
921 |
+
stats_html += '</div>'
|
922 |
+
|
923 |
+
# Format key points
|
924 |
+
key_points_html = f'''
|
925 |
+
<div class="key-points-container">
|
926 |
+
<h3>π― Key Insights</h3>
|
927 |
+
<ul style="list-style: none; padding: 0;">
|
928 |
+
'''
|
929 |
+
for i, point in enumerate(result["key_points"], 1):
|
930 |
+
key_points_html += f'<li style="margin-bottom: 12px; padding: 10px; background: rgba(255,255,255,0.15); border-radius: 8px;"><strong>{i}.</strong> {point}</li>'
|
931 |
+
key_points_html += '</ul></div>'
|
932 |
+
|
933 |
+
# Format document outline
|
934 |
+
outline_html = ""
|
935 |
+
if result.get("outline"):
|
936 |
+
outline_html = f'''
|
937 |
+
<div class="outline-container">
|
938 |
+
<h3>π Document Structure</h3>
|
939 |
+
<ol style="padding-left: 20px;">
|
940 |
+
'''
|
941 |
+
for item in result["outline"]:
|
942 |
+
outline_html += f'<li style="margin-bottom: 8px; padding: 5px 0;">{item}</li>'
|
943 |
+
outline_html += '</ol></div>'
|
944 |
+
|
945 |
+
return (
|
946 |
+
gr.update(value=summary_html, visible=True),
|
947 |
+
gr.update(value=stats_html, visible=True),
|
948 |
+
gr.update(value=key_points_html, visible=True),
|
949 |
+
gr.update(value=outline_html, visible=True if outline_html else False),
|
950 |
+
gr.update(visible=False)
|
951 |
+
)
|
952 |
+
|
953 |
+
except Exception as e:
|
954 |
+
error_html = f'''
|
955 |
+
<div class="error-container">
|
956 |
+
<h4>π₯ Unexpected Error</h4>
|
957 |
+
<p><strong>Details:</strong> {str(e)}</p>
|
958 |
+
<p><small>Please try again or contact support if the issue persists.</small></p>
|
959 |
+
</div>
|
960 |
+
'''
|
961 |
+
return (
|
962 |
+
gr.update(visible=False),
|
963 |
+
gr.update(visible=False),
|
964 |
+
gr.update(visible=False),
|
965 |
+
gr.update(visible=False),
|
966 |
+
gr.update(value=error_html, visible=True)
|
967 |
+
)
|
968 |
+
|
969 |
+
# Create the main interface
|
970 |
+
with gr.Blocks(css=css, title="π CatalystGPT-4 Document Summarizer", theme=gr.themes.Soft()) as demo:
|
971 |
+
|
972 |
+
# Header
|
973 |
+
gr.HTML("""
|
974 |
+
<div class="catalyst-header">
|
975 |
+
<h1 style="margin: 0; font-size: 3em; font-weight: bold;">π CatalystGPT-4</h1>
|
976 |
+
<h2 style="margin: 10px 0; font-size: 1.5em; opacity: 0.9;">Advanced Document Summarizer</h2>
|
977 |
+
<p style="margin: 15px 0 0 0; font-size: 1.1em; opacity: 0.8;">
|
978 |
+
Powered by AI β’ Extractive & Abstractive Summarization β’ Comprehensive Analytics
|
979 |
+
</p>
|
980 |
+
</div>
|
981 |
+
""")
|
982 |
+
|
983 |
+
with gr.Row():
|
984 |
+
# Left column - Enhanced Controls
|
985 |
+
with gr.Column(scale=1):
|
986 |
+
with gr.Group():
|
987 |
+
gr.HTML('<div class="control-panel">')
|
988 |
+
|
989 |
+
gr.Markdown("### π Document Upload")
|
990 |
+
file_upload = gr.File(
|
991 |
+
label="Choose your document",
|
992 |
+
file_types=[".pdf", ".docx", ".txt", ".md", ".rtf"],
|
993 |
+
elem_classes="file-upload-area"
|
994 |
+
)
|
995 |
+
|
996 |
+
gr.Markdown("### βοΈ Analysis Settings")
|
997 |
+
|
998 |
+
enable_ai_features = gr.Checkbox(
|
999 |
+
label="π€ Enable AI Features",
|
1000 |
+
value=TRANSFORMERS_AVAILABLE,
|
1001 |
+
info="Use advanced AI models for better summarization",
|
1002 |
+
interactive=TRANSFORMERS_AVAILABLE
|
1003 |
+
)
|
1004 |
+
|
1005 |
+
summary_type = gr.Radio(
|
1006 |
+
choices=[
|
1007 |
+
("π§ AI Summary (Neural)", "ai"),
|
1008 |
+
("π Extractive Summary", "extractive")
|
1009 |
+
],
|
1010 |
+
value="ai" if TRANSFORMERS_AVAILABLE else "extractive",
|
1011 |
+
label="Summarization Method",
|
1012 |
+
info="AI generates new text, Extractive selects key sentences"
|
1013 |
+
)
|
1014 |
+
|
1015 |
+
summary_length = gr.Radio(
|
1016 |
+
choices=[
|
1017 |
+
("β‘ Short & Concise", "short"),
|
1018 |
+
("π Standard Length", "medium"),
|
1019 |
+
("π Detailed Analysis", "long"),
|
1020 |
+
("π Comprehensive Report", "detailed")
|
1021 |
+
],
|
1022 |
+
value="medium",
|
1023 |
+
label="Analysis Depth",
|
1024 |
+
info="Choose the level of detail for your analysis"
|
1025 |
+
)
|
1026 |
+
|
1027 |
+
analyze_btn = gr.Button(
|
1028 |
+
"π Analyze Document",
|
1029 |
+
variant="primary",
|
1030 |
+
size="lg",
|
1031 |
+
elem_classes="analyze-button"
|
1032 |
+
)
|
1033 |
+
|
1034 |
+
gr.HTML('</div>')
|
1035 |
+
|
1036 |
+
# Enhanced Library Status
|
1037 |
+
gr.Markdown(f"""
|
1038 |
+
### π System Status
|
1039 |
+
|
1040 |
+
**Core Features:**
|
1041 |
+
- π **PDF Processing:** {"β
PyMuPDF" if PYMUPDF_AVAILABLE else ("β
PyPDF2" if PDF_AVAILABLE else "β Not Available")}
|
1042 |
+
- π **Word Documents:** {"β
Available" if DOCX_AVAILABLE else "β Install python-docx"}
|
1043 |
+
- π€ **AI Summarization:** {"β
Available" if TRANSFORMERS_AVAILABLE else "β Install transformers"}
|
1044 |
+
- π **Advanced NLP:** {"β
Available" if NLTK_AVAILABLE else "β οΈ Basic processing"}
|
1045 |
+
- π **Sentiment Analysis:** {"β
Available" if (NLTK_AVAILABLE and summarizer.sentiment_analyzer) else "β Not Available"}
|
1046 |
+
|
1047 |
+
**Performance:**
|
1048 |
+
- π§ **Device:** {"GPU" if DEVICE >= 0 else "CPU"}
|
1049 |
+
- πΎ **Cache:** {"Enabled" if summarizer.cache is not None else "Disabled"}
|
1050 |
+
""")
|
1051 |
+
|
1052 |
+
# Right column - Enhanced Results
|
1053 |
+
with gr.Column(scale=2):
|
1054 |
+
|
1055 |
+
# Welcome message
|
1056 |
+
welcome_msg = gr.HTML(
|
1057 |
+
value="""
|
1058 |
+
<div style="text-align: center; padding: 80px 20px; color: #666;">
|
1059 |
+
<div style="font-size: 4em; margin-bottom: 20px;">π</div>
|
1060 |
+
<h2 style="color: #333; margin-bottom: 15px;">Ready for Analysis</h2>
|
1061 |
+
<p style="font-size: 1.1em; margin-bottom: 10px;">Upload any document to unlock AI-powered insights</p>
|
1062 |
+
<p><small style="color: #888;">Supports PDF, Word, Text, Markdown, and RTF files</small></p>
|
1063 |
+
<div style="margin-top: 30px; padding: 20px; background: #f8f9fa; border-radius: 10px; display: inline-block;">
|
1064 |
+
<strong>Features:</strong> AI Summarization β’ Key Points β’ Analytics β’ Sentiment Analysis
|
1065 |
+
</div>
|
1066 |
+
</div>
|
1067 |
+
""",
|
1068 |
+
visible=True
|
1069 |
+
)
|
1070 |
+
|
1071 |
+
# Results sections
|
1072 |
+
summary_display = gr.HTML(visible=False)
|
1073 |
+
stats_display = gr.HTML(visible=False)
|
1074 |
+
key_points_display = gr.HTML(visible=False)
|
1075 |
+
outline_display = gr.HTML(visible=False)
|
1076 |
+
error_display = gr.HTML(visible=False)
|
1077 |
+
|
1078 |
+
# Event handlers
|
1079 |
+
def on_file_change(file):
|
1080 |
+
if file is None:
|
1081 |
+
return (
|
1082 |
+
gr.update(visible=True),
|
1083 |
+
gr.update(visible=False),
|
1084 |
+
gr.update(visible=False),
|
1085 |
+
gr.update(visible=False),
|
1086 |
+
gr.update(visible=False),
|
1087 |
+
gr.update(visible=False)
|
1088 |
+
)
|
1089 |
+
else:
|
1090 |
+
return (
|
1091 |
+
gr.update(visible=False),
|
1092 |
+
gr.update(visible=False),
|
1093 |
+
gr.update(visible=False),
|
1094 |
+
gr.update(visible=False),
|
1095 |
+
gr.update(visible=False),
|
1096 |
+
gr.update(visible=False)
|
1097 |
+
)
|
1098 |
+
|
1099 |
+
# Auto-hide welcome when file uploaded
|
1100 |
+
file_upload.change(
|
1101 |
+
fn=on_file_change,
|
1102 |
+
inputs=[file_upload],
|
1103 |
+
outputs=[welcome_msg, summary_display, stats_display, key_points_display, outline_display, error_display]
|
1104 |
+
)
|
1105 |
+
|
1106 |
+
# Process document on button click
|
1107 |
+
analyze_btn.click(
|
1108 |
+
fn=process_and_display,
|
1109 |
+
inputs=[file_upload, summary_type, summary_length, enable_ai_features],
|
1110 |
+
outputs=[summary_display, stats_display, key_points_display, outline_display, error_display]
|
1111 |
+
)
|
1112 |
+
|
1113 |
+
# Auto-process when settings change (if file uploaded)
|
1114 |
+
for component in [summary_type, summary_length, enable_ai_features]:
|
1115 |
+
component.change(
|
1116 |
+
fn=process_and_display,
|
1117 |
+
inputs=[file_upload, summary_type, summary_length, enable_ai_features],
|
1118 |
+
outputs=[summary_display, stats_display, key_points_display, outline_display, error_display]
|
1119 |
+
)
|
1120 |
+
|
1121 |
+
# Enhanced Footer
|
1122 |
+
gr.HTML("""
|
1123 |
+
<div style="margin-top: 50px; padding: 30px; background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%);
|
1124 |
+
border-radius: 15px; text-align: center; border-top: 3px solid #007bff;">
|
1125 |
+
<h3 style="color: #333; margin-bottom: 20px;">π οΈ Installation & Setup</h3>
|
1126 |
+
|
1127 |
+
<div style="background: #343a40; color: #fff; padding: 15px; border-radius: 8px;
|
1128 |
+
font-family: 'Courier New', monospace; margin: 15px 0;">
|
1129 |
+
<strong>Quick Install:</strong><br>
|
1130 |
+
pip install gradio python-docx PyPDF2 transformers torch nltk PyMuPDF
|
1131 |
+
</div>
|
1132 |
+
|
1133 |
+
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 15px; margin-top: 20px;">
|
1134 |
+
<div style="background: white; padding: 15px; border-radius: 10px; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
|
1135 |
+
<strong>π― Core Features</strong><br>
|
1136 |
+
<small>Multi-format support, AI summarization, key insights extraction</small>
|
1137 |
+
</div>
|
1138 |
+
<div style="background: white; padding: 15px; border-radius: 10px; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
|
1139 |
+
<strong>π Advanced Analytics</strong><br>
|
1140 |
+
<small>Sentiment analysis, readability scoring, word frequency</small>
|
1141 |
+
</div>
|
1142 |
+
<div style="background: white; padding: 15px; border-radius: 10px; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
|
1143 |
+
<strong>π Performance</strong><br>
|
1144 |
+
<small>Intelligent caching, GPU acceleration, batch processing</small>
|
1145 |
+
</div>
|
1146 |
+
</div>
|
1147 |
+
|
1148 |
+
<p style="margin-top: 20px; color: #666;">
|
1149 |
+
<strong>CatalystGPT-4</strong> - Advanced Document Analysis Platform
|
1150 |
+
</p>
|
1151 |
+
</div>
|
1152 |
+
""")
|
1153 |
+
|
1154 |
+
return demo
|
1155 |
+
|
1156 |
+
if __name__ == "__main__":
|
1157 |
+
demo = create_catalyst_interface()
|
1158 |
+
demo.launch(
|
1159 |
+
server_name="0.0.0.0",
|
1160 |
+
server_port=7860,
|
1161 |
+
show_error=True,
|
1162 |
+
show_tips=True,
|
1163 |
+
enable_queue=True
|
1164 |
+
)
|