saraaaaaaaaaaaaaa commited on
Commit
f33ebe5
·
1 Parent(s): 2fd7e8f

Training in progress epoch 0

Browse files
Files changed (7) hide show
  1. README.md +58 -0
  2. config.json +63 -0
  3. special_tokens_map.json +7 -0
  4. tf_model.h5 +3 -0
  5. tokenizer.json +0 -0
  6. tokenizer_config.json +59 -0
  7. vocab.txt +0 -0
README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: asafaya/bert-base-arabic
4
+ tags:
5
+ - generated_from_keras_callback
6
+ model-index:
7
+ - name: saraaaaaaaaaaaaaa/first_pos_project
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information Keras had access to. You should
12
+ probably proofread and complete it, then remove this comment. -->
13
+
14
+ # saraaaaaaaaaaaaaa/first_pos_project
15
+
16
+ This model is a fine-tuned version of [asafaya/bert-base-arabic](https://huggingface.co/asafaya/bert-base-arabic) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Train Loss: 0.1010
19
+ - Validation Loss: 0.1099
20
+ - Train Accuracy: 0.9697
21
+ - Train F1: 0.9565
22
+ - Train Precision: 0.9588
23
+ - Train Recall: 0.9542
24
+ - Epoch: 0
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 909, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': np.float32(0.9), 'beta_2': np.float32(0.999), 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
44
+ - training_precision: float32
45
+
46
+ ### Training results
47
+
48
+ | Train Loss | Validation Loss | Train Accuracy | Train F1 | Train Precision | Train Recall | Epoch |
49
+ |:----------:|:---------------:|:--------------:|:--------:|:---------------:|:------------:|:-----:|
50
+ | 0.1010 | 0.1099 | 0.9697 | 0.9565 | 0.9588 | 0.9542 | 0 |
51
+
52
+
53
+ ### Framework versions
54
+
55
+ - Transformers 4.51.3
56
+ - TensorFlow 2.18.0
57
+ - Datasets 3.6.0
58
+ - Tokenizers 0.21.1
config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForTokenClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "ADJ",
13
+ "1": "ADP",
14
+ "2": "ADV",
15
+ "3": "AUX",
16
+ "4": "CCONJ",
17
+ "5": "DET",
18
+ "6": "INTJ",
19
+ "7": "NOUN",
20
+ "8": "NUM",
21
+ "9": "PART",
22
+ "10": "PRON",
23
+ "11": "PROPN",
24
+ "12": "PUNCT",
25
+ "13": "SCONJ",
26
+ "14": "SYM",
27
+ "15": "VERB",
28
+ "16": "X"
29
+ },
30
+ "initializer_range": 0.02,
31
+ "intermediate_size": 3072,
32
+ "label2id": {
33
+ "ADJ": 0,
34
+ "ADP": 1,
35
+ "ADV": 2,
36
+ "AUX": 3,
37
+ "CCONJ": 4,
38
+ "DET": 5,
39
+ "INTJ": 6,
40
+ "NOUN": 7,
41
+ "NUM": 8,
42
+ "PART": 9,
43
+ "PRON": 10,
44
+ "PROPN": 11,
45
+ "PUNCT": 12,
46
+ "SCONJ": 13,
47
+ "SYM": 14,
48
+ "VERB": 15,
49
+ "X": 16
50
+ },
51
+ "layer_norm_eps": 1e-12,
52
+ "max_position_embeddings": 512,
53
+ "model_type": "bert",
54
+ "num_attention_heads": 12,
55
+ "num_hidden_layers": 12,
56
+ "output_past": true,
57
+ "pad_token_id": 0,
58
+ "position_embedding_type": "absolute",
59
+ "transformers_version": "4.51.3",
60
+ "type_vocab_size": 2,
61
+ "use_cache": true,
62
+ "vocab_size": 32000
63
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tf_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75404a5e0168031fd1091779ae55f5c37d4d9ebfb5d904793baf18c73d21d72a
3
+ size 440432652
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "full_tokenizer_file": null,
50
+ "mask_token": "[MASK]",
51
+ "model_max_length": 1000000000000000019884624838656,
52
+ "never_split": null,
53
+ "pad_token": "[PAD]",
54
+ "sep_token": "[SEP]",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "BertTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff