--- language: - en license: mit library_name: transformers tags: - vision - image-to-text - image-captioning pipeline_tag: image-to-text base_model: Salesforce/blip2-opt-2.7b --- # VLRM This repository contains the weights of BLIP-2 OPT-2.7B model fine-tuned by reinforcement learning method introduced in the paper [VLRM: Vision-Language Models act as Reward Models for Image Captioning (on submission ATM)](https://arxiv.org/submit/5511483/view). The RL-tuned model is able to generate longer and more comprehensive descriptions with zero computational overhead compared to the original model. You can find other details in the [GitHub Repository (to be done)](https://github.com/papermsucode). # Running the model ## Option 1
Load the whole model from this repo ```python import torch import requests from PIL import Image from transformers import Blip2Processor, Blip2ForConditionalGeneration processor = Blip2Processor.from_pretrained("sashakunitsyn/vlrm-blip2-opt-2.7b") model = Blip2ForConditionalGeneration.from_pretrained("sashakunitsyn/vlrm-blip2-opt-2.7b", torch_dtype=torch.float16, device_map="auto") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16) out = model.generate(**inputs, max_new_tokens=60) processor.decode(out[0], skip_special_tokens=True).strip() >>> 'a woman in a plaid shirt shaking hands with a yellow labrador retriever sitting on the ground at sunset on a beach in florida' ```
## Option 2 Since the fine-tuned layers take small part of the whole model, you can first load the original model, then load the RL-tuned weights.
Step 1. Load the original model ```python import torch import requests from PIL import Image from transformers import Blip2Processor, Blip2ForConditionalGeneration processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16, device_map="auto") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16) out = model.generate(**inputs, max_new_tokens=60) processor.decode(out[0], skip_special_tokens=True).strip() >>> 'a woman sitting on the beach with a dog' ```
Step 2. Load the RL-tuned weights Available checkpoints: - `vlrm-blip2-opt-2.7b.pt` (VLRM in the paper) - `vlrm-rs-blip2-opt-2.7b.pt` (VLRM-RS in the paper) ```python from huggingface_hub import hf_hub_download finetuned_weights_state_dict = torch.load(hf_hub_download(repo_id="sashakunitsyn/vlrm-blip2-opt-2.7b", filename="vlrm-blip2-opt-2.7b.pt")) model.load_state_dict(finetuned_weights_state_dict, strict=False) out = model.generate(**inputs, max_new_tokens=60) processor.decode(out[0], skip_special_tokens=True).strip() >>> 'a woman in a plaid shirt shaking hands with a yellow labrador retriever sitting on the ground at sunset on a beach in florida' ```