--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:4 - loss:CosineSimilarityLoss base_model: sentence-transformers/all-MiniLM-L6-v2 pipeline_tag: sentence-similarity library_name: sentence-transformers --- # Resume Matcher Transformer A fine-tuned sentence transformer model based on `sentence-transformers/all-MiniLM-L6-v2` optimized for comparing resumes with job descriptions. ## Model Overview This model transforms resumes and job descriptions into 384-dimensional embeddings that can be compared for semantic similarity, helping to identify the best candidates for a position. ### Key Specifications - **Base Model**: [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) - **Output Dimensions**: 384 - **Sequence Length**: 256 tokens maximum - **Similarity Function**: Cosine Similarity - **Pooling Strategy**: Mean pooling ## Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_mean_tokens': True}) (2): Normalize() ) ``` ## Usage ```bash # Install the required library pip install -U sentence-transformers ``` ```python from sentence_transformers import SentenceTransformer from sklearn.metrics.pairwise import cosine_similarity # Load the model model = SentenceTransformer("path/to/model") # Example job description job_description = "Looking for a Python backend developer with Django experience." # Example resumes resume1 = "Experienced Python developer with Flask and Django skills." resume2 = "Teacher with 5 years in classroom management experience." # Generate embeddings job_embedding = model.encode(job_description) resume1_embedding = model.encode(resume1) resume2_embedding = model.encode(resume2) # Calculate similarity similarity1 = cosine_similarity([job_embedding], [resume1_embedding])[0][0] similarity2 = cosine_similarity([job_embedding], [resume2_embedding])[0][0] print(f"Similarity with Resume 1: {similarity1:.4f}") print(f"Similarity with Resume 2: {similarity2:.4f}") ``` ## Training Details ### Dataset Information - **Size**: 4 training samples - **Format**: Pairs of text samples with similarity labels (0.0 = no match, 1.0 = match) - **Loss Function**: CosineSimilarityLoss with MSELoss ### Sample Training Data | Resume/Profile | Job Description | Match Score | |:--------------|:---------------|:-----------| | Teacher with classroom management experience | Looking for AI/ML engineer with Python experience | 0.0 | | DevOps engineer with AWS, Docker, Jenkins | Hiring cloud infrastructure engineer with AWS and CI/CD tools | 1.0 | | Experienced Python developer with Flask and Django | Looking for backend Python developer with Django experience | 1.0 | ## Training Hyperparameters - Training epochs: 4 - Batch size: 2 - Learning rate: 5e-05 - Optimizer: AdamW
View all hyperparameters - `per_device_train_batch_size`: 2 - `per_device_eval_batch_size`: 2 - `num_train_epochs`: 4 - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `lr_scheduler_type`: linear - `warmup_steps`: 0 - `seed`: 42
## Framework Versions - Sentence Transformers: 4.1.0 - Transformers: 4.51.3 - PyTorch: 2.6.0+cu124 - Python: 3.11.12 ## Citation ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```