--- language: - ja license_name: sarahina-non-commercial-license license_link: LICENSE base_model: - sbintuitions/sarashina2.2-1b tags: - transformers - sentence-similarity - feature-extraction - sentence-transformers inference: false --- # Sarashina-Embedding-v2-1B **[日本語のREADME/Japanese README](https://huggingface.co/sbintuitions/sarashina-embedding-v2-1b/blob/main/README_JA.md)** "Sarashina-Embedding-v2-1B" is a Japanese text embedding model, based on the Japanese LLM "[Sarashina2.2-1B](https://huggingface.co/sbintuitions/sarashina2.2-1b)". We trained this model with multi-stage contrastive learning. We achieved the state-of-the-art average score across 28 datasets in [JMTEB](https://huggingface.co/datasets/sbintuitions/JMTEB) (Japanese Massive Text Embedding Benchmark).(Benchmarked on July 28, 2025. ) This model maps sentences & paragraphs to a 1792-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and other applications. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Sarashina2.2-1B](https://huggingface.co/sbintuitions/sarashina2.2-1b) - **Maximum Sequence Length:** 8,192 tokens - **Output Dimensionality:** 1,792 dimensions - **Similarity Function:** Cosine Similarity - **Language:** Japanese - **License:** [Sarashina Model NonCommercial License Agreement](https://huggingface.co/sbintuitions/sarashina-embedding-v2-1b/blob/main/LICENSE) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: LlamaModel (1): Pooling({'word_embedding_dimension': 1792, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': False}) ) ``` ## Usage First install the [Sentence Transformers](https://github.com/UKPLab/sentence-transformers) library: ```bash pip install sentence-transformers==4.0.2 ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sbintuitions/sarashina-embedding-v2-1b") # Run inference query = [ 'task: クエリを与えるので、与えられたWeb検索クエリに答える関連文章を検索してください。\nquery: Sarashinaのテキスト埋め込みモデルはありますか?' ] texts = [ 'text: 更級日記は、平安時代中期に菅原孝標女によって書かれた回想録です。', 'text: Sarashinaは、SB Intuitionsが開発した日本語大規模言語モデルです。これまでに7B, 13B, 70B, 8x70Bのモデルが公開されています。', 'text: サラシナエンベディングは日本語言語モデルをベースにした日本語埋め込みモデルです。' ] query_embedding = model.encode(query) text_embeddings = model.encode(texts) # Get the similarity scores between the embeddings similarities = model.similarity(query_embedding, text_embeddings) print(similarities) # tensor([[0.7403, 0.8651, 0.8775]]) ``` ### How to add instructions and prefixes For both the query and document sides, use different prefix formats. On the query side, add the prefix `task:` followed by instructions. (Only for STS task, both sentences are considered as query, and should be prefixed with the same instruction.) - Query Side: ```task: {Instrcution}\nquery: {Query}``` - Document Side: ```text: {Document}``` ### Templates for instructions and prefixes The table below provides instruction and prefix templates for five main tasks. |Task|Query Side|Document Side| |:-:|:-|:-| |Retrieval
Reranking|task: 質問を与えるので、その質問に答えるのに役立つ関連文書を検索してください。\nquery: |text: | |Clustering|task: 与えられたドキュメントのトピックまたはテーマを特定してください。\nquery: | - | |Classification|task: 与えられたレビューを適切な評価カテゴリに分類してください。\nquery: | - | |STS|task: クエリを与えるので,もっともクエリに意味が似ている一節を探してください。\nquery: |task: クエリを与えるので,もっともクエリに意味が似ている一節を探してください。\nquery: | ## Training Sarashina-Embedding-v2-1B is created through the following three-stage learning process: ### Stage 1: Weakly-supervised Learning To build a general-purpose and high-performance embedding model for a wide range of domains, we employed contrastive learning using weak supervision data, which consists of our own web-crawled data and open datasets. ### Step2: Supervised Fine-tuning To further train the model to better understand the similarity between queries and documents, we performed fine-tuning using higher-quality data than that used in Stage 1. Additionally, we trained multiple models by modifying parts of the data. ### Stage 3: Model Merging To enhance performance, we merged the weights of the two models that yielded the highest JMTEB scores in Stage 2 through linear merging. ## Evaluation Results (*) with [JMTEB](https://huggingface.co/datasets/sbintuitions/JMTEB) |Model|Avg.|Retrieval|STS|Classification|Reranking|Clustering| |:-:|:-:|:-:|:-:|:-:|:-:|:-:| |Sarashina-Embedding-v2-1B (This model)|**76.38**|**76.48**|**84.22**|77.14|**86.28**|52.56| |[cl-nagoya/ruri-v3-310m](https://huggingface.co/cl-nagoya/ruri-v3-310m)|75.85|76.03|81.59|**77.65**|85.84|50.52| |[sbintuitions/sarashina-embedding-v1-1b](https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b)|74.87|74.53|81.71|77.20|84.36|50.30| |[OpenAI/text-embedding-3-large](https://openai.com/ja-JP/index/new-embedding-models-and-api-updates/)|73.86|71.95|82.52|77.27|83.06|51.82| (*) Evaluated on July 28, 2025. ## License This model is licensed under [Sarashina Model NonCommercial License Agreement](https://huggingface.co/sbintuitions/sarashina-embedding-v2-1b/blob/main/LICENSE). **If you are interested in using this model for commercial purposes, please feel free to contact us through our [contact page](https://www.sbintuitions.co.jp/contact/).**