File size: 17,098 Bytes
073ed96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
# coding=utf-8
# Copyright 2025 the SB Intuitions.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Srashina2Vision.
"""

from copy import deepcopy
from typing import List, Optional, Union

import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
from transformers import (
    AutoImageProcessor,
    PreTrainedTokenizer,
    Qwen2VLImageProcessor,
    StoppingCriteria,
    StoppingCriteriaList,
)
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_transforms import (
    convert_to_rgb,
    to_channel_dimension_format,
)
from transformers.image_utils import (
    ChannelDimension,
    ImageInput,
    VideoInput,
    get_image_size,
    infer_channel_dimension_format,
    is_scaled_image,
    make_list_of_images,
    to_numpy_array,
)
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from transformers.utils import logging

logger = logging.get_logger(__name__)


class GenerationStopper(StoppingCriteria):
    def __init__(
        self,
        stop_str_list: list[str],
        tokenizer: PreTrainedTokenizer,
        decode_suffix_length: int = 5,
    ):
        self.stop_str_list = stop_str_list
        self.tokenizer = deepcopy(tokenizer)
        self.decode_suffix_length = decode_suffix_length
        self.input_ids_end = None

    def __repr__(self):
        return f"Stopping words: {self.stop_str_list}"

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        if self.input_ids_end is None:
            length = input_ids.shape[1]
            self.input_ids_end = length - 1 if (length - 1) > 0 else 0
        decode_ids = input_ids[0][self.input_ids_end :][-self.decode_suffix_length :]
        if len(decode_ids) == 0:
            decoded = ""
        else:
            decoded = self.tokenizer.decode(decode_ids)

        for stop_str in self.stop_str_list:
            if stop_str in decoded:
                self.input_ids_end = None
                return True
        return False

    @property
    def criteria(self):
        return StoppingCriteriaList([self])

    def format(self, sentence: str):
        for w in self.stop_str_list:
            if w in sentence[-len(w) :]:
                sentence = sentence[: -len(w)]
        return sentence


class Sarashina2VisionImageProcessor(Qwen2VLImageProcessor):
    def _preprocess(
        self,
        images: Union[ImageInput, VideoInput],
        do_resize: bool = None,
        resample: Image.Resampling = None,
        do_rescale: bool = None,
        rescale_factor: float = None,
        do_normalize: bool = None,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        do_convert_rgb: bool = None,
        data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
    ):
        """
        Preprocess an image or batch of images. Copy of the `preprocess` method from `Qwen2VLImageProcessor`.

        Args:
            images (`ImageInput`):
                Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`.
            vision_info (`List[Dict]`, *optional*):
                Optional list of dictionaries containing additional information about vision inputs.
            do_resize (`bool`, *optional*, defaults to `self.do_resize`):
                Whether to resize the image.
            resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
                Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
            do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
                Whether to rescale the image.
            rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
                Scale factor to use if rescaling the image.
            do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
                Whether to normalize the image.
            image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
                Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
            image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
                Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
            do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
                Whether to convert the image to RGB.
            data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - Unset: Use the channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.   - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        """
        images = make_list_of_images(images)

        if do_convert_rgb:
            images = [convert_to_rgb(image) for image in images]

        # All transformations expect numpy arrays.
        images = [to_numpy_array(image) for image in images]

        if do_rescale and is_scaled_image(images[0]):
            logger.warning_once(
                "It looks like you are trying to rescale already rescaled images. If the input"
                " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
            )
        if input_data_format is None:
            # We assume that all images have the same channel dimension format.
            input_data_format = infer_channel_dimension_format(images[0])

        height, width = get_image_size(images[0], channel_dim=input_data_format)
        resized_height, resized_width = height, width
        processed_images = []
        for image in images:
            if do_rescale:
                image = self.rescale(
                    image, scale=rescale_factor, input_data_format=input_data_format
                )

            if do_normalize:
                image = self.normalize(
                    image=image,
                    mean=image_mean,
                    std=image_std,
                    input_data_format=input_data_format,
                )

            image = to_channel_dimension_format(
                image, data_format, input_channel_dim=input_data_format
            )

            if do_resize:
                resized_height, resized_width = smart_resize(
                    height,
                    width,
                    factor=self.patch_size * self.merge_size,
                    min_pixels=self.min_pixels,
                    max_pixels=self.max_pixels,
                )
                image = (
                    F.interpolate(
                        torch.from_numpy(image).unsqueeze(0),
                        size=(resized_height, resized_width),
                        mode="bicubic",
                    )
                    .squeeze(0)
                    .numpy()
                )

            processed_images.append(image)

        patches = np.array(processed_images)
        if data_format == ChannelDimension.LAST:
            patches = patches.transpose(0, 3, 1, 2)
        if patches.shape[0] % self.temporal_patch_size != 0:
            repeats = np.repeat(patches[-1][np.newaxis], self.temporal_patch_size - 1, axis=0)
            patches = np.concatenate([patches, repeats], axis=0)
        channel = patches.shape[1]
        grid_t = patches.shape[0] // self.temporal_patch_size
        grid_h, grid_w = resized_height // self.patch_size, resized_width // self.patch_size
        patches = patches.reshape(
            grid_t,
            self.temporal_patch_size,
            channel,
            grid_h // self.merge_size,
            self.merge_size,
            self.patch_size,
            grid_w // self.merge_size,
            self.merge_size,
            self.patch_size,
        )
        patches = patches.transpose(0, 3, 6, 4, 7, 2, 1, 5, 8)
        flatten_patches = patches.reshape(
            grid_t * grid_h * grid_w,
            channel * self.temporal_patch_size * self.patch_size * self.patch_size,
        )

        return flatten_patches, (grid_t, grid_h, grid_w)


class Srashina2VisionProcessorKwargs(ProcessingKwargs, total=False):
    _defaults = {
        "text_kwargs": {
            "padding": False,
        },
    }


class Srashina2VisionProcessor(ProcessorMixin):
    r"""
    Constructs Srashina2Vision processor which wraps a Srashina2Vision image processor and a LLama tokenizer into a single processor.
    [`Srashina2VisionProcessor`] offers all the functionalities of [`Sarashina2VisionImageProcessor`] and [`LlamaTokenizerFast`]. See the
    [`~Srashina2VisionProcessor.__call__`] and [`~Srashina2VisionProcessor.decode`] for more information.
    Args:
        image_processor ([`Sarashina2VisionImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`LlamaTokenizerFast`], *optional*):
            The tokenizer is a required input.
        chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
            in a chat into a tokenizable string.
    """

    attributes = ["image_processor", "tokenizer"]
    valid_kwargs = ["chat_template"]
    image_processor_class = "AutoImageProcessor"
    tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")

    def __init__(self, image_processor=None, tokenizer=None, chat_template=None, **kwargs):
        self.image_token = (
            "<|file|>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token
        )
        self.stop_symbol = "\n###"
        super().__init__(image_processor, tokenizer, chat_template=chat_template)

    def __call__(
        self,
        images: ImageInput = None,
        text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
        **kwargs: Unpack[Srashina2VisionProcessorKwargs],
    ) -> BatchFeature:
        """
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to
        Sarashina2VisionImageProcessor's [`~Sarashina2VisionImageProcessor.__call__`] if `vision_infos` is not `None`.

        Args:
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:
                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
            - **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
        """
        output_kwargs = self._merge_kwargs(
            Srashina2VisionProcessorKwargs,
            tokenizer_init_kwargs=self.tokenizer.init_kwargs,
            **kwargs,
        )
        if images is not None:
            image_inputs = self.image_processor(
                images=images, videos=None, **output_kwargs["images_kwargs"]
            )
            image_grid_thw = image_inputs["image_grid_thw"]
        else:
            image_inputs = {}
            image_grid_thw = None

        if not isinstance(text, list):
            text = [text]

        if image_grid_thw is not None:
            merge_length = self.image_processor.merge_size**2
            index = 0
            for i in range(len(text)):
                while self.image_token in text[i]:
                    text[i] = text[i].replace(
                        self.image_token,
                        "<|placeholder|>" * (image_grid_thw[index].prod() // merge_length),
                        1,
                    )
                    index += 1
                text[i] = text[i].replace("<|placeholder|>", self.image_token)

        text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])

        return BatchFeature(data={**text_inputs, **image_inputs})

    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`].
        """
        return [
            output.replace(self.stop_symbol, "")
            for output in self.tokenizer.batch_decode(*args, **kwargs)
        ]

    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`].
        """
        return self.tokenizer.decode(*args, **kwargs).replace(self.stop_symbol, "")

    def post_process_image_text_to_text(self, generated_outputs):
        """
        Post-process the output of the model to decode the text.

        Args:
            generated_outputs (`torch.Tensor` or `np.ndarray`):
                The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
                or `(sequence_length,)`.

        Returns:
            `List[str]`: The decoded text.
        """
        return self.tokenizer.batch_decode(
            generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False
        )

    @property
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))

    def get_stopping_criteria(self, stop_symbols: List[str]):
        stopping_criteria = GenerationStopper(stop_str_list=stop_symbols, tokenizer=self.tokenizer)
        return stopping_criteria.criteria


Srashina2VisionProcessor.register_for_auto_class("AutoProcessor")
AutoImageProcessor.register("Sarashina2VisionImageProcessor", Sarashina2VisionImageProcessor)