chaojiemao
commited on
Commit
•
6030126
1
Parent(s):
7c5a090
new project named scepter SCEdit
Browse files
README.md
CHANGED
@@ -1,3 +1,72 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
tags:
|
6 |
+
- diffusion model
|
7 |
+
- stable diffusion
|
8 |
+
- SCEdit
|
9 |
+
- Scepter
|
10 |
+
- Scepter studio
|
11 |
+
- Controllable
|
12 |
+
- ControlNet
|
13 |
+
- Lora
|
14 |
---
|
15 |
+
<p align="center">
|
16 |
+
|
17 |
+
<h2 align="center">🪄SCEdit: Efficient and Controllable Image Diffusion Generation via Skip Connection Editing</h2>
|
18 |
+
<p align="center">
|
19 |
+
<strong>Zeyinzi Jiang</strong>
|
20 |
+
·
|
21 |
+
<strong>Chaojie Mao</strong>
|
22 |
+
·
|
23 |
+
<strong>Yulin Pan</strong>
|
24 |
+
·
|
25 |
+
<strong>Zhen Han</strong>
|
26 |
+
·
|
27 |
+
<strong>Jingfeng Zhang</strong>
|
28 |
+
<br>
|
29 |
+
<br>
|
30 |
+
<a href="https://arxiv.org/abs/2312.11392"><img src='https://img.shields.io/badge/arXiv-SCEdit-red' alt='Paper PDF'></a>
|
31 |
+
<a href='https://scedit.github.io/'><img src='https://img.shields.io/badge/Project_Page-SCEdit-green' alt='Project Page'></a>
|
32 |
+
<a href='https://github.com/modelscope/scepter'><img src='https://img.shields.io/badge/scepter-SCEdit-yellow'></a>
|
33 |
+
<a href='https://github.com/modelscope/swift'><img src='https://img.shields.io/badge/swift-SCEdit-blue'></a>
|
34 |
+
<br>
|
35 |
+
<b>Alibaba Group</b>
|
36 |
+
</p>
|
37 |
+
|
38 |
+
<table align="center">
|
39 |
+
<tr>
|
40 |
+
<td>
|
41 |
+
<img src="assets/figures/show.jpg">
|
42 |
+
</td>
|
43 |
+
</tr>
|
44 |
+
</table>
|
45 |
+
|
46 |
+
SCEdit is an efficient generative fine-tuning framework proposed by Alibaba TongYi Vision Intelligence Lab. This framework enhances the fine-tuning capabilities for text-to-image generation downstream tasks and enables quick adaptation to specific generative scenarios, **saving 30%-50% of training memory costs compared to LoRA**. Furthermore, it can be directly extended to controllable image generation tasks, **requiring only 7.9% of the parameters that ControlNet needs for conditional generation and saving 30% of memory usage**. It supports various conditional generation tasks including edge maps, depth maps, segmentation maps, poses, color maps, and image completion.
|
47 |
+
#### Code Example
|
48 |
+
```shell
|
49 |
+
git clone https://github.com/modelscope/scepter.git
|
50 |
+
cd scepter
|
51 |
+
PYTHONPATH=. python scepter/tools/run_train.py --cfg scepter/methods/SCEdit/t2i_sdxl_1024_sce.yaml
|
52 |
+
```
|
53 |
+
|
54 |
+
To prepare the training dataset.
|
55 |
+
|
56 |
+
```python
|
57 |
+
# pip install modelscope
|
58 |
+
from modelscope.msdatasets import MsDataset
|
59 |
+
ms_train_dataset = MsDataset.load('style_custom_dataset', namespace='damo', subset_name='3D', split='train_short')
|
60 |
+
print(next(iter(ms_train_dataset)))
|
61 |
+
```
|
62 |
+
|
63 |
+
## BibTeX
|
64 |
+
|
65 |
+
```bibtex
|
66 |
+
@article{jiang2023scedit,
|
67 |
+
title = {SCEdit: Efficient and Controllable Image Diffusion Generation via Skip Connection Editing},
|
68 |
+
author = {Jiang, Zeyinzi and Mao, Chaojie and Pan, Yulin and Han, Zhen and Zhang, Jingfeng},
|
69 |
+
year = {2023},
|
70 |
+
journal = {arXiv preprint arXiv:2312.11392}
|
71 |
+
}
|
72 |
+
```
|