chaojiemao commited on
Commit
6030126
1 Parent(s): 7c5a090

new project named scepter SCEdit

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md CHANGED
@@ -1,3 +1,72 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - en
5
+ tags:
6
+ - diffusion model
7
+ - stable diffusion
8
+ - SCEdit
9
+ - Scepter
10
+ - Scepter studio
11
+ - Controllable
12
+ - ControlNet
13
+ - Lora
14
  ---
15
+ <p align="center">
16
+
17
+ <h2 align="center">🪄SCEdit: Efficient and Controllable Image Diffusion Generation via Skip Connection Editing</h2>
18
+ <p align="center">
19
+ <strong>Zeyinzi Jiang</strong>
20
+ ·
21
+ <strong>Chaojie Mao</strong>
22
+ ·
23
+ <strong>Yulin Pan</strong>
24
+ ·
25
+ <strong>Zhen Han</strong>
26
+ ·
27
+ <strong>Jingfeng Zhang</strong>
28
+ <br>
29
+ <br>
30
+ <a href="https://arxiv.org/abs/2312.11392"><img src='https://img.shields.io/badge/arXiv-SCEdit-red' alt='Paper PDF'></a>
31
+ <a href='https://scedit.github.io/'><img src='https://img.shields.io/badge/Project_Page-SCEdit-green' alt='Project Page'></a>
32
+ <a href='https://github.com/modelscope/scepter'><img src='https://img.shields.io/badge/scepter-SCEdit-yellow'></a>
33
+ <a href='https://github.com/modelscope/swift'><img src='https://img.shields.io/badge/swift-SCEdit-blue'></a>
34
+ <br>
35
+ <b>Alibaba Group</b>
36
+ </p>
37
+
38
+ <table align="center">
39
+ <tr>
40
+ <td>
41
+ <img src="assets/figures/show.jpg">
42
+ </td>
43
+ </tr>
44
+ </table>
45
+
46
+ SCEdit is an efficient generative fine-tuning framework proposed by Alibaba TongYi Vision Intelligence Lab. This framework enhances the fine-tuning capabilities for text-to-image generation downstream tasks and enables quick adaptation to specific generative scenarios, **saving 30%-50% of training memory costs compared to LoRA**. Furthermore, it can be directly extended to controllable image generation tasks, **requiring only 7.9% of the parameters that ControlNet needs for conditional generation and saving 30% of memory usage**. It supports various conditional generation tasks including edge maps, depth maps, segmentation maps, poses, color maps, and image completion.
47
+ #### Code Example
48
+ ```shell
49
+ git clone https://github.com/modelscope/scepter.git
50
+ cd scepter
51
+ PYTHONPATH=. python scepter/tools/run_train.py --cfg scepter/methods/SCEdit/t2i_sdxl_1024_sce.yaml
52
+ ```
53
+
54
+ To prepare the training dataset.
55
+
56
+ ```python
57
+ # pip install modelscope
58
+ from modelscope.msdatasets import MsDataset
59
+ ms_train_dataset = MsDataset.load('style_custom_dataset', namespace='damo', subset_name='3D', split='train_short')
60
+ print(next(iter(ms_train_dataset)))
61
+ ```
62
+
63
+ ## BibTeX
64
+
65
+ ```bibtex
66
+ @article{jiang2023scedit,
67
+ title = {SCEdit: Efficient and Controllable Image Diffusion Generation via Skip Connection Editing},
68
+ author = {Jiang, Zeyinzi and Mao, Chaojie and Pan, Yulin and Han, Zhen and Zhang, Jingfeng},
69
+ year = {2023},
70
+ journal = {arXiv preprint arXiv:2312.11392}
71
+ }
72
+ ```