chaojiemao commited on
Commit
8afb13b
1 Parent(s): 04b1fbd

modify model readme

Browse files
Files changed (1) hide show
  1. README.md +11 -19
README.md CHANGED
@@ -24,16 +24,16 @@ tags:
24
  ·
25
  <strong>Jingfeng Zhang</strong>
26
  </p>
 
 
 
 
 
 
27
  <p align="center">
28
  <b>Alibaba Group</b>
29
  </p>
30
- <hr>
31
- <p>
32
- <a href="https://arxiv.org/abs/2312.11392"><img src='https://img.shields.io/badge/arXiv-SCEdit-red' alt='Paper PDF' margin-top=0 margin-bottom=0></a>
33
- <a href='https://scedit.github.io/'><img src='https://img.shields.io/badge/Project_Page-SCEdit-green' alt='Project Page' margin-top=0 margin-bottom=0></a>
34
- <a href='https://github.com/modelscope/scepter'><img src='https://img.shields.io/badge/scepter-SCEdit-yellow' margin-top=0 margin-bottom=0></a>
35
- <a href='https://github.com/modelscope/swift'><img src='https://img.shields.io/badge/swift-SCEdit-blue' margin-top=0 margin-bottom=0></a>
36
- </p>
37
  <p>
38
  <table align="center">
39
  <tr>
@@ -44,21 +44,13 @@ tags:
44
  </table>
45
  </p>
46
 
 
 
47
  SCEdit is an efficient generative fine-tuning framework proposed by Alibaba TongYi Vision Intelligence Lab. This framework enhances the fine-tuning capabilities for text-to-image generation downstream tasks and enables quick adaptation to specific generative scenarios, **saving 30%-50% of training memory costs compared to LoRA**. Furthermore, it can be directly extended to controllable image generation tasks, **requiring only 7.9% of the parameters that ControlNet needs for conditional generation and saving 30% of memory usage**. It supports various conditional generation tasks including edge maps, depth maps, segmentation maps, poses, color maps, and image completion.
48
  #### Code Example
49
  ```shell
50
- git clone https://github.com/modelscope/scepter.git
51
- cd scepter
52
- PYTHONPATH=. python scepter/tools/run_train.py --cfg scepter/methods/SCEdit/t2i_sdxl_1024_sce.yaml
53
- ```
54
-
55
- To prepare the training dataset.
56
-
57
- ```python
58
- # pip install modelscope
59
- from modelscope.msdatasets import MsDataset
60
- ms_train_dataset = MsDataset.load('style_custom_dataset', namespace='damo', subset_name='3D', split='train_short')
61
- print(next(iter(ms_train_dataset)))
62
  ```
63
 
64
  ## BibTeX
 
24
  ·
25
  <strong>Jingfeng Zhang</strong>
26
  </p>
27
+
28
+ <div align="center">
29
+
30
+ [**Paper (ArXiv)**](https://arxiv.org/abs/2312.11392) **|** [**Project Page**](https://scedit.github.io/) **|** [**Code**](https://github.com/modelscope/scepter)**|** [**Swift**](https://github.com/modelscope/swift)
31
+ </div>
32
+
33
  <p align="center">
34
  <b>Alibaba Group</b>
35
  </p>
36
+
 
 
 
 
 
 
37
  <p>
38
  <table align="center">
39
  <tr>
 
44
  </table>
45
  </p>
46
 
47
+
48
+
49
  SCEdit is an efficient generative fine-tuning framework proposed by Alibaba TongYi Vision Intelligence Lab. This framework enhances the fine-tuning capabilities for text-to-image generation downstream tasks and enables quick adaptation to specific generative scenarios, **saving 30%-50% of training memory costs compared to LoRA**. Furthermore, it can be directly extended to controllable image generation tasks, **requiring only 7.9% of the parameters that ControlNet needs for conditional generation and saving 30% of memory usage**. It supports various conditional generation tasks including edge maps, depth maps, segmentation maps, poses, color maps, and image completion.
50
  #### Code Example
51
  ```shell
52
+ pip install scepter
53
+ python -m scepter.tools.webui
 
 
 
 
 
 
 
 
 
 
54
  ```
55
 
56
  ## BibTeX