import torch.nn as nn import torch import torch.optim as optim class ViT(nn.Module): def __init__(self, image_size=28, patch_size=7, num_classes=10, dim=128, depth=6, heads=8, mlp_dim=256, dropout=0.1): super(ViT, self).__init__() assert image_size % patch_size == 0, 'image dimensions must be divisible by the patch size' num_patches = (image_size // patch_size) ** 2 patch_dim = 1 * patch_size ** 2 # 定义线性层将图像分块并映射到嵌入空间 self.patch_embedding = nn.Linear(patch_dim, dim) # 位置编码 # nn.Parameter是Pytorch中的一个类,用于将一个张量注册为模型的参数 self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim)) # Dropout层 self.dropout = nn.Dropout(dropout) # Transformer编码器 # 当 batch_first=True 时,输入和输出张量的形状为 (batch_size, seq_length, feature_dim)。当 batch_first=False 时,输入和输出张量的形状为 (seq_length, batch_size, feature_dim)。 self.transformer = nn.TransformerEncoder( nn.TransformerEncoderLayer( d_model=dim, nhead=heads, dim_feedforward=mlp_dim # batch_first=True ), num_layers=depth ) # 分类头 # nn.Identity()是一个空的层,它不执行任何操作,只是返回输入 # self.to_cls_token = nn.Identity() # self.mlp_head = nn.Linear(dim, num_classes) self.mlp_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) def forward(self, x): # x shape: [batch_size, 1, 28, 28] batch_size = x.size(0) x = x.view(batch_size, -1, 7*7) # 将图像划分为7x7的Patch x = self.patch_embedding(x) # [batch_size, num_patches, dim] x += self.pos_embedding # 添加位置编码 x = self.dropout(x) # 应用Dropout x = x.permute(1, 0, 2) # Transformer期望的输入形状:[seq_len, batch_size, embedding_dim] x = self.transformer(x) # [序列长度, batch_size, dim] x = x.permute(1, 0, 2) # 转回原来的形状:[batch_size, seq_len, dim] x = x.mean(dim=1) # 对所有Patch取平均,x.mean(dim=1) 这一步是对所有 Patch 的特征向量取平均值,从而得到一个代表整个图像的全局特征向量。 x = self.mlp_head(x) # [batch_size, num_classes] return x # def forward(self, x): # # x shape: (batch, 1, 28, 28) # batch_size = x.shape[0] # x = x.view(batch_size, -1, 7*7) # x = self.patch_embedding(x) # (batch, num_patches, dim) # x = x + self.pos_embedding # x = self.transformer(x) # x = x.mean(dim=1) # (batch, dim) # x = self.mlp_head(x) # return x