--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # BERTopic_teyakkuzhaber This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("sdantonio/BERTopic_teyakkuzhaber") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 4 * Number of training documents: 2382
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | depremde - yu - vatandas - kaybedem - sondaki | 28 | -1_depremde_yu_vatandas_kaybedem | | 0 | alıs - kılıc - abd - yas - kars | 1 | 0_alıs_kılıc_abd_yas | | 1 | osmaniye - endonezya - konya - sondakika - adıyaman | 2323 | 1_osmaniye_endonezya_konya_sondakika | | 2 | 984tl - 971tl - 1093tl - kırılmaya - anlık | 30 | 2_984tl_971tl_1093tl_kırılmaya |
## Training hyperparameters * calculate_probabilities: False * language: None * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: False * zeroshot_min_similarity: 0.7 * zeroshot_topic_list: None ## Framework versions * Numpy: 1.23.5 * HDBSCAN: 0.8.38.post1 * UMAP: 0.5.6 * Pandas: 2.2.2 * Scikit-Learn: 1.5.1 * Sentence-transformers: 3.0.1 * Transformers: 4.44.2 * Numba: 0.60.0 * Plotly: 5.24.0 * Python: 3.10.12