seacorn commited on
Commit
71dea87
·
verified ·
1 Parent(s): 69ace9a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +155 -196
README.md CHANGED
@@ -1,199 +1,158 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ library_name: peft
3
+ license: llama3.1
4
+ base_model: meta-llama/Llama-3.1-8B-Instruct
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ datasets:
9
+ - seacorn/news-summarizer-reasoner
10
+ model-index:
11
+ - name: llama3.1-8b-reasoning-summarizer
12
+ results: []
13
  ---
14
 
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
19
+ <details><summary>See axolotl config</summary>
20
+
21
+ axolotl version: `0.8.0.dev0`
22
+ ```yaml
23
+ base_model: meta-llama/Llama-3.1-8B-Instruct
24
+ # optionally might have model_type or tokenizer_type
25
+ model_type: LlamaForCausalLM
26
+ tokenizer_type: AutoTokenizer
27
+ # Automatically upload checkpoint and final model to HF
28
+ hub_model_id: seacorn/llama3.1-8b-reasoning-summarizer
29
+
30
+ load_in_8bit: true
31
+ load_in_4bit: false
32
+ strict: false
33
+
34
+ seed: 42
35
+
36
+ datasets:
37
+ - path: output.jsonl
38
+ type: chat_template
39
+ dataset_prepared_path:
40
+ val_set_size: 0.05
41
+ output_dir: ./lora-out
42
+
43
+ sequence_len: 8192
44
+ sample_packing: true
45
+ eval_sample_packing: false
46
+ pad_to_sequence_len: true
47
+
48
+ adapter: lora
49
+ lora_model_dir:
50
+ lora_r: 16
51
+ lora_alpha: 32
52
+ lora_dropout: 0.05
53
+ lora_target_linear: true
54
+ lora_fan_in_fan_out:
55
+ lora_modules_to_save:
56
+ - embed_tokens
57
+ - lm_head
58
+
59
+ wandb_project: huggingface
60
+ wandb_entity:
61
+ wandb_watch:
62
+ wandb_name: llama3.1-8b-reasoning-summarizer
63
+ wandb_log_model:
64
+
65
+ gradient_accumulation_steps: 4
66
+ micro_batch_size: 2
67
+ num_epochs: 2
68
+ optimizer: adamw_bnb_8bit
69
+ lr_scheduler: cosine
70
+ learning_rate: 0.0002
71
+
72
+ train_on_inputs: false
73
+ group_by_length: false
74
+ bf16: auto
75
+ fp16:
76
+ tf32: false
77
+
78
+ gradient_checkpointing: true
79
+ early_stopping_patience:
80
+ resume_from_checkpoint:
81
+ local_rank:
82
+ logging_steps: 1
83
+ xformers_attention:
84
+ flash_attention: true
85
+ s2_attention:
86
+
87
+ warmup_ratio: 0.05
88
+ evals_per_epoch: 4
89
+ eval_table_size:
90
+ eval_max_new_tokens: 128
91
+ saves_per_epoch: 5
92
+ debug:
93
+ deepspeed:
94
+ weight_decay: 0.0
95
+ fsdp:
96
+ fsdp_config:
97
+ special_tokens:
98
+ pad_token: <|end_of_text|>
99
+
100
+ ```
101
+
102
+ </details><br>
103
+
104
+ # llama3.1-8b-reasoning-summarizer
105
+
106
+ This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the [seacorn/news-summarizer-reasoner](https://huggingface.co/datasets/seacorn/news-summarizer-reasoner) dataset.
107
+ It achieves the following results on the evaluation set:
108
+ - Loss: 1.1173
109
+
110
+ ## Model description
111
+
112
+ More information needed
113
+
114
+ ## Intended uses & limitations
115
+
116
+ More information needed
117
+
118
+ ## Training and evaluation data
119
+
120
+ More information needed
121
+
122
+ ## Training procedure
123
+
124
+ ### Training hyperparameters
125
+
126
+ The following hyperparameters were used during training:
127
+ - learning_rate: 0.0002
128
+ - train_batch_size: 2
129
+ - eval_batch_size: 2
130
+ - seed: 42
131
+ - gradient_accumulation_steps: 4
132
+ - total_train_batch_size: 8
133
+ - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
134
+ - lr_scheduler_type: cosine
135
+ - lr_scheduler_warmup_steps: 56
136
+ - num_epochs: 2.0
137
+
138
+ ### Training results
139
+
140
+ | Training Loss | Epoch | Step | Validation Loss |
141
+ |:-------------:|:------:|:----:|:---------------:|
142
+ | 2.0396 | 0.0018 | 1 | 1.7982 |
143
+ | 1.3908 | 0.2506 | 141 | 1.2241 |
144
+ | 1.8534 | 0.5011 | 282 | 1.1842 |
145
+ | 1.5745 | 0.7517 | 423 | 1.1560 |
146
+ | 0.9261 | 1.0018 | 564 | 1.1288 |
147
+ | 1.2359 | 1.2523 | 705 | 1.1344 |
148
+ | 1.1835 | 1.5029 | 846 | 1.1223 |
149
+ | 0.9898 | 1.7534 | 987 | 1.1173 |
150
+
151
+
152
+ ### Framework versions
153
+
154
+ - PEFT 0.15.0
155
+ - Transformers 4.50.0
156
+ - Pytorch 2.5.1+cu124
157
+ - Datasets 3.4.1
158
+ - Tokenizers 0.21.1