Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
---
|
4 |
+
|
5 |
+
# VGGWildFireModel for Wildfire Classification
|
6 |
+
|
7 |
+
## Model Details
|
8 |
+
|
9 |
+
- **Model Architecture:** VGG-16 (Modified)
|
10 |
+
- **Framework:** PyTorch
|
11 |
+
- **Input Shape:** 3-channel RGB images
|
12 |
+
- **Number of Parameters:** ~ (Based on VGG-16)
|
13 |
+
- **Output:** Binary classification (wildfire presence)
|
14 |
+
|
15 |
+
## Model Description
|
16 |
+
|
17 |
+
This model is a **fine-tuned VGG-16** for wildfire classification. The pretrained **VGG-16** backbone is used with its feature extractor **frozen**, while only the **final classification layer** is trained. The last fully connected layer has been replaced with a **single output neuron** for binary classification.
|
18 |
+
|
19 |
+
## Training Details
|
20 |
+
|
21 |
+
- **Optimizer:** Adam
|
22 |
+
- **Batch Size:** 32
|
23 |
+
- **Loss Function:** Binary Cross-Entropy
|
24 |
+
- **Number of Epochs:** 10
|
25 |
+
- **Dataset:** [Wildfire Detection Image Data](https://www.kaggle.com/datasets/brsdincer/wildfire-detection-image-data)
|
26 |
+
|
27 |
+
### Losses Per Epoch
|
28 |
+
|
29 |
+
| Epoch | Training Loss | Validation Loss |
|
30 |
+
|-------|--------------|----------------|
|
31 |
+
| 1 | 0.2571 | 0.3858 |
|
32 |
+
| 2 | 0.0846 | 0.1935 |
|
33 |
+
| 3 | 0.0165 | 0.1573 |
|
34 |
+
| 4 | 0.0013 | 0.1204 |
|
35 |
+
| 5 | 0.0001 | 0.1243 |
|
36 |
+
| 6 | 0.0000 | 0.1247 |
|
37 |
+
| 7 | 0.0000 | 0.1244 |
|
38 |
+
| 8 | 0.0000 | 0.1242 |
|
39 |
+
| 9 | 0.0000 | 0.1240 |
|
40 |
+
| 10 | 0.0000 | 0.1236 |
|
41 |
+
|
42 |
+
## License
|
43 |
+
|
44 |
+
This model is released under the **MIT License**.
|
45 |
+
|
46 |
+
---
|