--- license: mit --- # VGGWildFireModel for Wildfire Classification ## Model Details - **Model Architecture:** VGG-16 (Modified) - **Framework:** PyTorch - **Input Shape:** 3-channel RGB images - **Number of Parameters:** ~ (Based on VGG-16) - **Output:** Binary classification (wildfire presence) ## Model Description This model is a **fine-tuned VGG-16** for wildfire classification. The pretrained **VGG-16** backbone is used with its feature extractor **frozen**, while only the **final classification layer** is trained. The last fully connected layer has been replaced with a **single output neuron** for binary classification. ## Training Details - **Optimizer:** Adam - **Batch Size:** 32 - **Loss Function:** Binary Cross-Entropy - **Number of Epochs:** 10 - **Dataset:** [Wildfire Detection Image Data](https://www.kaggle.com/datasets/brsdincer/wildfire-detection-image-data) ### Losses Per Epoch | Epoch | Training Loss | Validation Loss | |-------|--------------|----------------| | 1 | 0.2571 | 0.3858 | | 2 | 0.0846 | 0.1935 | | 3 | 0.0165 | 0.1573 | | 4 | 0.0013 | 0.1204 | | 5 | 0.0001 | 0.1243 | | 6 | 0.0000 | 0.1247 | | 7 | 0.0000 | 0.1244 | | 8 | 0.0000 | 0.1242 | | 9 | 0.0000 | 0.1240 | | 10 | 0.0000 | 0.1236 | ## License This model is released under the **MIT License**. ---