nreimers
		
	commited on
		
		
					Commit 
							
							·
						
						425358b
	
1
								Parent(s):
							
							2580533
								
Add new SentenceTransformer model.
Browse files- .gitattributes +1 -0
 - 1_Pooling/config.json +7 -0
 - README.md +106 -0
 - config.json +24 -0
 - config_sentence_transformers.json +7 -0
 - modules.json +14 -0
 - pytorch_model.bin +3 -0
 - sentence_bert_config.json +4 -0
 - special_tokens_map.json +1 -0
 - tokenizer.json +0 -0
 - tokenizer_config.json +1 -0
 - vocab.txt +0 -0
 
    	
        .gitattributes
    CHANGED
    
    | 
         @@ -14,3 +14,4 @@ 
     | 
|
| 14 | 
         
             
            *.pb filter=lfs diff=lfs merge=lfs -text
         
     | 
| 15 | 
         
             
            *.pt filter=lfs diff=lfs merge=lfs -text
         
     | 
| 16 | 
         
             
            *.pth filter=lfs diff=lfs merge=lfs -text
         
     | 
| 
         | 
| 
         | 
|
| 14 | 
         
             
            *.pb filter=lfs diff=lfs merge=lfs -text
         
     | 
| 15 | 
         
             
            *.pt filter=lfs diff=lfs merge=lfs -text
         
     | 
| 16 | 
         
             
            *.pth filter=lfs diff=lfs merge=lfs -text
         
     | 
| 17 | 
         
            +
            pytorch_model.bin filter=lfs diff=lfs merge=lfs -text
         
     | 
    	
        1_Pooling/config.json
    ADDED
    
    | 
         @@ -0,0 +1,7 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "word_embedding_dimension": 768,
         
     | 
| 3 | 
         
            +
              "pooling_mode_cls_token": false,
         
     | 
| 4 | 
         
            +
              "pooling_mode_mean_tokens": true,
         
     | 
| 5 | 
         
            +
              "pooling_mode_max_tokens": false,
         
     | 
| 6 | 
         
            +
              "pooling_mode_mean_sqrt_len_tokens": false
         
     | 
| 7 | 
         
            +
            }
         
     | 
    	
        README.md
    ADDED
    
    | 
         @@ -0,0 +1,106 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            ---
         
     | 
| 2 | 
         
            +
            pipeline_tag: sentence-similarity
         
     | 
| 3 | 
         
            +
            tags:
         
     | 
| 4 | 
         
            +
            - sentence-transformers
         
     | 
| 5 | 
         
            +
            - feature-extraction
         
     | 
| 6 | 
         
            +
            - sentence-similarity
         
     | 
| 7 | 
         
            +
            - transformers
         
     | 
| 8 | 
         
            +
            ---
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            # sentence-transformers/stsb-bert-base
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            ## Usage (Sentence-Transformers)
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            ```
         
     | 
| 21 | 
         
            +
            pip install -U sentence-transformers
         
     | 
| 22 | 
         
            +
            ```
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            Then you can use the model like this:
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            ```python
         
     | 
| 27 | 
         
            +
            from sentence_transformers import SentenceTransformer
         
     | 
| 28 | 
         
            +
            sentences = ["This is an example sentence", "Each sentence is converted"]
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
            model = SentenceTransformer('sentence-transformers/stsb-bert-base')
         
     | 
| 31 | 
         
            +
            embeddings = model.encode(sentences)
         
     | 
| 32 | 
         
            +
            print(embeddings)
         
     | 
| 33 | 
         
            +
            ```
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
            ## Usage (HuggingFace Transformers)
         
     | 
| 38 | 
         
            +
            Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
            ```python
         
     | 
| 41 | 
         
            +
            from transformers import AutoTokenizer, AutoModel
         
     | 
| 42 | 
         
            +
            import torch
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
            #Mean Pooling - Take attention mask into account for correct averaging
         
     | 
| 46 | 
         
            +
            def mean_pooling(model_output, attention_mask):
         
     | 
| 47 | 
         
            +
                token_embeddings = model_output[0] #First element of model_output contains all token embeddings
         
     | 
| 48 | 
         
            +
                input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
         
     | 
| 49 | 
         
            +
                return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
            # Sentences we want sentence embeddings for
         
     | 
| 53 | 
         
            +
            sentences = ['This is an example sentence', 'Each sentence is converted']
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
            # Load model from HuggingFace Hub
         
     | 
| 56 | 
         
            +
            tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/stsb-bert-base')
         
     | 
| 57 | 
         
            +
            model = AutoModel.from_pretrained('sentence-transformers/stsb-bert-base')
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
            # Tokenize sentences
         
     | 
| 60 | 
         
            +
            encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
            # Compute token embeddings
         
     | 
| 63 | 
         
            +
            with torch.no_grad():
         
     | 
| 64 | 
         
            +
                model_output = model(**encoded_input)
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
            # Perform pooling. In this case, max pooling.
         
     | 
| 67 | 
         
            +
            sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
            print("Sentence embeddings:")
         
     | 
| 70 | 
         
            +
            print(sentence_embeddings)
         
     | 
| 71 | 
         
            +
            ```
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
            ## Evaluation Results
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
            For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/stsb-bert-base)
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
            ## Full Model Architecture
         
     | 
| 84 | 
         
            +
            ```
         
     | 
| 85 | 
         
            +
            SentenceTransformer(
         
     | 
| 86 | 
         
            +
              (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
         
     | 
| 87 | 
         
            +
              (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
         
     | 
| 88 | 
         
            +
            )
         
     | 
| 89 | 
         
            +
            ```
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
            ## Citing & Authors
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
            This model was trained by [sentence-transformers](https://www.sbert.net/). 
         
     | 
| 94 | 
         
            +
                    
         
     | 
| 95 | 
         
            +
            If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
         
     | 
| 96 | 
         
            +
            ```bibtex 
         
     | 
| 97 | 
         
            +
            @inproceedings{reimers-2019-sentence-bert,
         
     | 
| 98 | 
         
            +
                title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
         
     | 
| 99 | 
         
            +
                author = "Reimers, Nils and Gurevych, Iryna",
         
     | 
| 100 | 
         
            +
                booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
         
     | 
| 101 | 
         
            +
                month = "11",
         
     | 
| 102 | 
         
            +
                year = "2019",
         
     | 
| 103 | 
         
            +
                publisher = "Association for Computational Linguistics",
         
     | 
| 104 | 
         
            +
                url = "http://arxiv.org/abs/1908.10084",
         
     | 
| 105 | 
         
            +
            }
         
     | 
| 106 | 
         
            +
            ```
         
     | 
    	
        config.json
    ADDED
    
    | 
         @@ -0,0 +1,24 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "_name_or_path": "old_models/stsb-bert-base/0_BERT",
         
     | 
| 3 | 
         
            +
              "architectures": [
         
     | 
| 4 | 
         
            +
                "BertModel"
         
     | 
| 5 | 
         
            +
              ],
         
     | 
| 6 | 
         
            +
              "attention_probs_dropout_prob": 0.1,
         
     | 
| 7 | 
         
            +
              "gradient_checkpointing": false,
         
     | 
| 8 | 
         
            +
              "hidden_act": "gelu",
         
     | 
| 9 | 
         
            +
              "hidden_dropout_prob": 0.1,
         
     | 
| 10 | 
         
            +
              "hidden_size": 768,
         
     | 
| 11 | 
         
            +
              "initializer_range": 0.02,
         
     | 
| 12 | 
         
            +
              "intermediate_size": 3072,
         
     | 
| 13 | 
         
            +
              "layer_norm_eps": 1e-12,
         
     | 
| 14 | 
         
            +
              "max_position_embeddings": 512,
         
     | 
| 15 | 
         
            +
              "model_type": "bert",
         
     | 
| 16 | 
         
            +
              "num_attention_heads": 12,
         
     | 
| 17 | 
         
            +
              "num_hidden_layers": 12,
         
     | 
| 18 | 
         
            +
              "pad_token_id": 0,
         
     | 
| 19 | 
         
            +
              "position_embedding_type": "absolute",
         
     | 
| 20 | 
         
            +
              "transformers_version": "4.7.0",
         
     | 
| 21 | 
         
            +
              "type_vocab_size": 2,
         
     | 
| 22 | 
         
            +
              "use_cache": true,
         
     | 
| 23 | 
         
            +
              "vocab_size": 30522
         
     | 
| 24 | 
         
            +
            }
         
     | 
    	
        config_sentence_transformers.json
    ADDED
    
    | 
         @@ -0,0 +1,7 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "__version__": {
         
     | 
| 3 | 
         
            +
                "sentence_transformers": "2.0.0",
         
     | 
| 4 | 
         
            +
                "transformers": "4.7.0",
         
     | 
| 5 | 
         
            +
                "pytorch": "1.9.0+cu102"
         
     | 
| 6 | 
         
            +
              }
         
     | 
| 7 | 
         
            +
            }
         
     | 
    	
        modules.json
    ADDED
    
    | 
         @@ -0,0 +1,14 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            [
         
     | 
| 2 | 
         
            +
              {
         
     | 
| 3 | 
         
            +
                "idx": 0,
         
     | 
| 4 | 
         
            +
                "name": "0",
         
     | 
| 5 | 
         
            +
                "path": "",
         
     | 
| 6 | 
         
            +
                "type": "sentence_transformers.models.Transformer"
         
     | 
| 7 | 
         
            +
              },
         
     | 
| 8 | 
         
            +
              {
         
     | 
| 9 | 
         
            +
                "idx": 1,
         
     | 
| 10 | 
         
            +
                "name": "1",
         
     | 
| 11 | 
         
            +
                "path": "1_Pooling",
         
     | 
| 12 | 
         
            +
                "type": "sentence_transformers.models.Pooling"
         
     | 
| 13 | 
         
            +
              }
         
     | 
| 14 | 
         
            +
            ]
         
     | 
    	
        pytorch_model.bin
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:30d78fa33795c0fb1c53d0b65c70866e44f6965d4d3fb2a07833a7a91e92a9f2
         
     | 
| 3 | 
         
            +
            size 438007537
         
     | 
    	
        sentence_bert_config.json
    ADDED
    
    | 
         @@ -0,0 +1,4 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "max_seq_length": 128,
         
     | 
| 3 | 
         
            +
              "do_lower_case": false
         
     | 
| 4 | 
         
            +
            }
         
     | 
    	
        special_tokens_map.json
    ADDED
    
    | 
         @@ -0,0 +1 @@ 
     | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
         
     | 
    	
        tokenizer.json
    ADDED
    
    | 
         The diff for this file is too large to render. 
		See raw diff 
     | 
| 
         | 
    	
        tokenizer_config.json
    ADDED
    
    | 
         @@ -0,0 +1 @@ 
     | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "special_tokens_map_file": "old_models/stsb-bert-base/0_BERT/special_tokens_map.json", "name_or_path": "old_models/stsb-bert-base/0_BERT", "do_basic_tokenize": true, "never_split": null}
         
     | 
    	
        vocab.txt
    ADDED
    
    | 
         The diff for this file is too large to render. 
		See raw diff 
     | 
| 
         |