File size: 1,971 Bytes
5d06822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec5bea4
 
 
 
5d06822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: transformers
license: mit
base_model: sercetexam9/afro-xlmr-base-vmw-MICRO
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: afro-xlmr-base-vmw-MICRO-finetuned-augmentation-LUNAR-TAPT-micro
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# afro-xlmr-base-vmw-MICRO-finetuned-augmentation-LUNAR-TAPT-micro

This model is a fine-tuned version of [sercetexam9/afro-xlmr-base-vmw-MICRO](https://huggingface.co/sercetexam9/afro-xlmr-base-vmw-MICRO) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2140
- F1: 0.4766
- Roc Auc: 0.7082
- Accuracy: 0.6820

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Roc Auc | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
| 0.0842        | 1.0   | 169  | 0.2140          | 0.4766 | 0.7082  | 0.6820   |
| 0.0753        | 2.0   | 338  | 0.2155          | 0.4185 | 0.6476  | 0.7028   |
| 0.0629        | 3.0   | 507  | 0.2321          | 0.4273 | 0.6741  | 0.6657   |
| 0.0805        | 4.0   | 676  | 0.2392          | 0.3963 | 0.6565  | 0.6627   |
| 0.0577        | 5.0   | 845  | 0.2320          | 0.4661 | 0.6929  | 0.6880   |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0