--- library_name: transformers license: mit base_model: xlnet/xlnet-large-cased tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: cs221-xlnet-large-cased-eng-finetuned-remove-neutral-20-epochs results: [] --- # cs221-xlnet-large-cased-eng-finetuned-remove-neutral-20-epochs This model is a fine-tuned version of [xlnet/xlnet-large-cased](https://huggingface.co/xlnet/xlnet-large-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4332 - F1: 0.78 - Roc Auc: 0.8345 - Accuracy: 0.4901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.5992 | 1.0 | 64 | 0.5778 | 0.4728 | 0.6331 | 0.1897 | | 0.5534 | 2.0 | 128 | 0.4896 | 0.6557 | 0.7409 | 0.3004 | | 0.4278 | 3.0 | 192 | 0.4141 | 0.7192 | 0.7893 | 0.3775 | | 0.357 | 4.0 | 256 | 0.4215 | 0.7112 | 0.7818 | 0.4209 | | 0.2832 | 5.0 | 320 | 0.3839 | 0.7644 | 0.8258 | 0.4289 | | 0.2142 | 6.0 | 384 | 0.3746 | 0.7745 | 0.8293 | 0.4881 | | 0.1625 | 7.0 | 448 | 0.4357 | 0.7704 | 0.8269 | 0.4763 | | 0.1169 | 8.0 | 512 | 0.4332 | 0.78 | 0.8345 | 0.4901 | | 0.0805 | 9.0 | 576 | 0.5132 | 0.7714 | 0.8320 | 0.4526 | | 0.0624 | 10.0 | 640 | 0.4989 | 0.7735 | 0.8298 | 0.4625 | | 0.0509 | 11.0 | 704 | 0.5205 | 0.7736 | 0.8315 | 0.4644 | | 0.0294 | 12.0 | 768 | 0.5289 | 0.7767 | 0.8322 | 0.4763 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0