--- library_name: transformers license: mit base_model: FacebookAI/roberta-large tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: roberta-large-finetuned-augmentation-LUNAR-TAPT-macro results: [] --- # roberta-large-finetuned-augmentation-LUNAR-TAPT-macro This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2832 - F1: 0.8635 - Roc Auc: 0.8937 - Accuracy: 0.7150 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.2744 | 1.0 | 421 | 0.2710 | 0.7932 | 0.8326 | 0.5754 | | 0.2287 | 2.0 | 842 | 0.2281 | 0.8454 | 0.8815 | 0.6758 | | 0.1678 | 3.0 | 1263 | 0.2293 | 0.8563 | 0.8879 | 0.7049 | | 0.1287 | 4.0 | 1684 | 0.2491 | 0.8619 | 0.8918 | 0.7126 | | 0.1298 | 5.0 | 2105 | 0.2591 | 0.8633 | 0.8936 | 0.7173 | | 0.0788 | 6.0 | 2526 | 0.2703 | 0.8612 | 0.8914 | 0.7138 | | 0.0883 | 7.0 | 2947 | 0.2679 | 0.8605 | 0.8905 | 0.7203 | | 0.0821 | 8.0 | 3368 | 0.2832 | 0.8635 | 0.8937 | 0.7150 | | 0.0739 | 9.0 | 3789 | 0.2998 | 0.8601 | 0.8963 | 0.7156 | | 0.0538 | 10.0 | 4210 | 0.2951 | 0.8615 | 0.8957 | 0.7167 | | 0.0466 | 11.0 | 4631 | 0.2999 | 0.8626 | 0.8976 | 0.7126 | | 0.0657 | 12.0 | 5052 | 0.3060 | 0.8608 | 0.8976 | 0.7203 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0