--- library_name: transformers license: mit base_model: xlnet/xlnet-large-cased tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: xlnet-large-cased-deu-DAPT-finetuned-10-epochs results: [] --- # xlnet-large-cased-deu-DAPT-finetuned-10-epochs This model is a fine-tuned version of [xlnet/xlnet-large-cased](https://huggingface.co/xlnet/xlnet-large-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4404 - F1: 0.0249 - Roc Auc: 0.5066 - Accuracy: 0.2678 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.458 | 1.0 | 95 | 0.4404 | 0.0249 | 0.5066 | 0.2678 | | 0.4665 | 2.0 | 190 | 0.4676 | 0.0 | 0.5 | 0.2493 | | 0.4473 | 3.0 | 285 | 0.4604 | 0.0 | 0.5 | 0.2493 | | 0.4491 | 4.0 | 380 | 0.4544 | 0.0 | 0.5 | 0.2493 | | 0.4379 | 5.0 | 475 | 0.4544 | 0.0 | 0.5 | 0.2493 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0