File size: 3,153 Bytes
fd05a68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
library_name: transformers
license: mit
base_model: xlnet/xlnet-large-cased
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: xlnet-large-cased-finetuned-augmentation-LUNAR-TAPT-DAIR
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlnet-large-cased-finetuned-augmentation-LUNAR-TAPT-DAIR

This model is a fine-tuned version of [xlnet/xlnet-large-cased](https://huggingface.co/xlnet/xlnet-large-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3446
- F1: 0.7969
- Roc Auc: 0.8626
- Accuracy: 0.6676

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step  | Validation Loss | F1     | Roc Auc | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:--------:|
| 0.5069        | 1.0   | 627   | 0.5087          | 0.1392 | 0.5511  | 0.1141   |
| 0.4852        | 2.0   | 1254  | 0.5375          | 0.1380 | 0.5503  | 0.1141   |
| 0.483         | 3.0   | 1881  | 0.4748          | 0.2573 | 0.5929  | 0.2402   |
| 0.4274        | 4.0   | 2508  | 0.4217          | 0.3887 | 0.6509  | 0.4134   |
| 0.4097        | 5.0   | 3135  | 0.3956          | 0.4075 | 0.6626  | 0.4505   |
| 0.3566        | 6.0   | 3762  | 0.3691          | 0.4944 | 0.7070  | 0.4916   |
| 0.344         | 7.0   | 4389  | 0.3530          | 0.5637 | 0.7385  | 0.5243   |
| 0.3145        | 8.0   | 5016  | 0.3265          | 0.6867 | 0.7866  | 0.5874   |
| 0.2944        | 9.0   | 5643  | 0.3415          | 0.6197 | 0.7661  | 0.5607   |
| 0.2168        | 10.0  | 6270  | 0.3160          | 0.7367 | 0.8176  | 0.6373   |
| 0.1664        | 11.0  | 6897  | 0.3014          | 0.7569 | 0.8345  | 0.6333   |
| 0.1604        | 12.0  | 7524  | 0.3070          | 0.7606 | 0.8411  | 0.6453   |
| 0.1616        | 13.0  | 8151  | 0.3060          | 0.7700 | 0.8411  | 0.6592   |
| 0.1155        | 14.0  | 8778  | 0.3160          | 0.7831 | 0.8532  | 0.6536   |
| 0.1226        | 15.0  | 9405  | 0.3307          | 0.7886 | 0.8556  | 0.6600   |
| 0.0968        | 16.0  | 10032 | 0.3346          | 0.7919 | 0.8594  | 0.6604   |
| 0.0939        | 17.0  | 10659 | 0.3389          | 0.7981 | 0.8621  | 0.6672   |
| 0.0632        | 18.0  | 11286 | 0.3417          | 0.7970 | 0.8634  | 0.6648   |
| 0.0816        | 19.0  | 11913 | 0.3438          | 0.7970 | 0.8625  | 0.6676   |
| 0.0759        | 20.0  | 12540 | 0.3446          | 0.7969 | 0.8626  | 0.6676   |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0