Model save
Browse files- README.md +80 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: xlnet/xlnet-large-cased
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: xlnet-large-cased-finetuned-augmentation-LUNAR-TAPT
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# xlnet-large-cased-finetuned-augmentation-LUNAR-TAPT
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [xlnet/xlnet-large-cased](https://huggingface.co/xlnet/xlnet-large-cased) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.5259
|
23 |
+
- F1: 0.8235
|
24 |
+
- Roc Auc: 0.8652
|
25 |
+
- Accuracy: 0.6073
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 2e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 16
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: cosine
|
50 |
+
- lr_scheduler_warmup_steps: 100
|
51 |
+
- num_epochs: 20
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
|
57 |
+
| 0.3732 | 1.0 | 318 | 0.3677 | 0.6417 | 0.7249 | 0.4227 |
|
58 |
+
| 0.291 | 2.0 | 636 | 0.2986 | 0.7666 | 0.8238 | 0.5426 |
|
59 |
+
| 0.2296 | 3.0 | 954 | 0.2937 | 0.7774 | 0.8291 | 0.5552 |
|
60 |
+
| 0.1332 | 4.0 | 1272 | 0.3269 | 0.7980 | 0.8559 | 0.5797 |
|
61 |
+
| 0.0964 | 5.0 | 1590 | 0.3768 | 0.7977 | 0.8473 | 0.5505 |
|
62 |
+
| 0.0618 | 6.0 | 1908 | 0.4196 | 0.7833 | 0.8416 | 0.5552 |
|
63 |
+
| 0.0356 | 7.0 | 2226 | 0.4305 | 0.8041 | 0.8509 | 0.5726 |
|
64 |
+
| 0.0214 | 8.0 | 2544 | 0.4510 | 0.8112 | 0.8482 | 0.5883 |
|
65 |
+
| 0.0196 | 9.0 | 2862 | 0.4708 | 0.8118 | 0.8582 | 0.5970 |
|
66 |
+
| 0.0111 | 10.0 | 3180 | 0.4950 | 0.8174 | 0.8590 | 0.5994 |
|
67 |
+
| 0.0124 | 11.0 | 3498 | 0.5083 | 0.8094 | 0.8572 | 0.5852 |
|
68 |
+
| 0.0079 | 12.0 | 3816 | 0.4904 | 0.8291 | 0.8646 | 0.6215 |
|
69 |
+
| 0.0062 | 13.0 | 4134 | 0.5218 | 0.8155 | 0.8578 | 0.5954 |
|
70 |
+
| 0.001 | 14.0 | 4452 | 0.5225 | 0.8194 | 0.8636 | 0.6073 |
|
71 |
+
| 0.0024 | 15.0 | 4770 | 0.5248 | 0.8244 | 0.8646 | 0.6088 |
|
72 |
+
| 0.0012 | 16.0 | 5088 | 0.5259 | 0.8235 | 0.8652 | 0.6073 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- Transformers 4.45.1
|
78 |
+
- Pytorch 2.4.0
|
79 |
+
- Datasets 3.0.1
|
80 |
+
- Tokenizers 0.20.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1445339812
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:178e8939f1ab142eb83980c4c9c3fdc5ada2f39200c6afe341ff97ff5dccf679
|
3 |
size 1445339812
|