File size: 1,748 Bytes
313f8f8
1161d79
313f8f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1161d79
 
 
686892f
92c4446
1161d79
 
313f8f8
 
 
1161d79
313f8f8
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from typing import Dict, List, Any
from transformers import AutoImageProcessor, Swin2SRForImageSuperResolution, Swin2SRModel
import torch
import base64
import logging
import numpy as np
from PIL import Image
from io import BytesIO

logger = logging.getLogger()
logger.setLevel(logging.DEBUG)


class EndpointHandler:
    def __init__(self, path=""):
        # load the model
        self.processor = AutoImageProcessor.from_pretrained("caidas/swin2SR-classical-sr-x2-64")
        Swin2SRModel._no_split_modules = ["Swin2SREmbeddings", "Swin2SRStage"]
        Swin2SRForImageSuperResolution._no_split_modules = ["Swin2SREmbeddings", "Swin2SRStage"]
        model = Swin2SRForImageSuperResolution.from_pretrained("caidas/swin2SR-classical-sr-x2-64", device_map="auto")
        logger.info(model.hf_device_map)
        model.hf_device_map["swin2sr.conv_after_body"] = model.hf_device_map["swin2sr.embeddings"]
        model.hf_device_map["upsample"] = model.hf_device_map["swin2sr.embeddings"]
        self.model = Swin2SRForImageSuperResolution.from_pretrained("caidas/swin2SR-classical-sr-x2-64", device_map=model.hf_device_map)

    def __call__(self, data: Any):
        image = data["inputs"]
        inputs = self.processor(image, return_tensors="pt")
        with torch.no_grad():
            outputs = self.model(**inputs)
        
        output = outputs.reconstruction.data.squeeze().float().cpu().clamp_(0, 1).numpy()
        output = np.moveaxis(output, source=0, destination=-1)
        output = (output * 255.0).round().astype(np.uint8)

        img = Image.fromarray(output)
        buffered = BytesIO()
        img.save(buffered, format="JPEG")
        img_str = base64.b64encode(buffered.getvalue())

        return img_str.decode()